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Abstract: Under the assumption of no unmeasured confounders, Cox proportional hazards regression with inverse probability 

of treatment (IPTW) weighting based on propensity scores can be used to produce approximately unbiased estimates of treatment 

effect hazard ratios and event risks using observational cohorts. Often the weights are treated as fixed even though they are 

random variables, typically derived from a logistic regression analysis applied to the same cohort with treatment use as the 

outcome. Bootstrapping the entire process of weight-derivation, Cox regression analysis and estimation produces valid confidence 

intervals that account for the variability in the weights, but this method may be time- and resource-intensive for large cohorts. 

Here the delta method is used to derive large sample interval estimates of treatment effects and event risks that account for 

variability in the weights analytically. External time-dependent covariates, left truncation, and cohort sampling study designs are 

accommodated. Simulation studies show that this method provides confidence interval coverage probabilities at or above nominal 

level for small and moderate sample sizes. Stabilization of the weights by multiplying them by the overall treatment rate 

noticeably improves confidence interval coverage probabilities. Software to perform the calculations is freely available. 
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1. Introduction 

Estimation of treatment effects and outcome probabilities 

from observational cohorts requires adjustment for 

confounding factors that may have influenced the selection of 

treatment and the outcome probabilities [1]. Failure to account 

for these confounding factors leads to biased estimates. When 

the outcome of interest is the time to a specified event and Cox 

proportional hazards regression is used for the analysis, inverse 

probability of treatment weighting (IPTW) based on the 

propensity for treatment provides approximately unbiased 

estimates of the average treatment effect in the population 

under the assumption of no unmeasured confounders [2]. The 

propensity scores for treatment assignment are typically 

estimated using a logistic regression analysis of the cohort 

used for the primary analysis. The resulting weights are often 

treated as fixed quantities and the variance of the regression 

parameter estimated using the robust method of Lin and Wei 

[3]. Using simulation studies, Austin [4] finds that this 

approach tends to over-estimate the variance of the treatment 

hazard ratio estimates, giving confidence intervals that have 

true coverage probability larger than nominal; Austin 

recommends bootstrapping the entire process of estimating the 

IPTW weights and using them in the Cox model. This 

produces valid confidence intervals, but the method may be 

time- or resource-intensive for large cohorts. An analytic 

method to account for the weight-estimation variance would 

therefore be a useful alternative and have the advantage of 

being fully reproducible. 

Estimation of the risk of the event of interest depending on 

covariate values is often an objective when a proportional 

hazards regression model is fit. The estimated risk for a 

specified set of covariate values is a transform of the 

estimated cumulative hazard function, which depends 

directly on the weights as well as the number and timing of 

events and the estimated regression parameters. 

Stratified cohort sampling designs are useful when studying 

relatively rare events and it is prohibitive to obtain the required 
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data on all members of a cohort [5]. Typically, these designs 

include all cohort members who experienced an event in the 

sample along with a randomly selected fraction of the members 

who did not experience an event. The random selection may be 

stratified by one or more characteristics of the cohort members.  

The Cox proportional hazards regression model 

accommodates time-dependent covariates. These can arise 

either because a covariate is measured repeatedly over time 

for each subject (“internal” time-dependence) or from 

assuming a fixed time-dependence of the effect of a covariate 

that is assessed at baseline (“external” time-dependence). 

Examples of external time-dependent covariates are (1) 

covariates with piece-wise constant hazard ratios, which are 

constant during specified time-intervals but vary across 

intervals, (2) covariates with time-dependence determined by 

a fixed function of time such as a natural cubic spline with 

parameters determined by baseline characteristics, and (3) 

current age of a study subject, defined as the age at study 

entry plus elapsed time since then. Hazard ratio estimates 

from the Cox model are valid and interpretable for either 

internal or external time-dependent covariates. The risk of a 

future event given the covariate values is well defined for 

external time-dependent covariates since the covariate path 

over time is determined by the baseline covariate values. For 

internal time-dependent covariates, however, risk estimation 

is complex, and requires assuming a distribution of the 

covariate value path [6-8]. The discussion here will restrict 

attention to external time-dependent covariates. 

Left truncation of observations of a time to event occurs 

when study subjects enter the study at a time later than time 

0. For example, if the time scale utilized is the subject’s 

chronological age, then the data are left-truncated at the 

subject’s age at study entry. Left truncation also occurs when 

events are structurally impossible during a period after study 

entry due to definitional constraints. One example is events 

not being counted during an initial treatment period that 

varies in duration. It is important to account for left 

truncation when it occurs to avoid bias in the analysis [9]. 

Hajage and colleagues [10] propose an analytic variance 

estimator for the treatment hazard ratio estimator in a Cox 

regression analysis using IPTW weighting based on 

propensity scores from a logistic regression. The variance 

estimator accounts for variability in the propensity score 

estimates as well as the variability Cox model parameter 

estimates using influence statistics based on linear 

approximations to the estimating equations. Simulations with 

large sample sizes (10,000 virtual subjects) indicate that 

confidence intervals for the treatment hazard ratio based on 

this variance estimator have true coverage probabilities that 

are very close to nominal levels and very similar to what the 

bootstrap produces. The development is restricted to Cox 

models with time-invariant covariates and does not 

accommodate cohort sampling designs or left truncation. 

Risk estimation is not discussed. 

Recently, alternatives to IPTW weighting have been 

suggested with the goal of reducing the influence of 

observations with propensity scores close to 0 and the resulting 

inflation of variance of the estimates [11]. A leading example is 

the “overlap weight”, equal to one minus the propensity score, 

that is, the probability of not receiving the treatment actually 

received [12, 13]. These weights can be applied to survival 

analysis [14, 15]. In contrast to IPTW weighting, which creates a 

simulated population in which the entire cohort has been 

randomized to treatment, the overlap weights down-weight 

individuals for which there is little or no overlap in treatments 

selected, thus creating a simulated population that emphasizes 

individuals with characteristics associated with clinical 

equipoise in treatment selection [16]. However, IPTW weighting 

is still used much more frequently than overlap weights or 

similar methods [11], perhaps due to the clear interpretation of 

the population of inference associated with IPTW. 

Here the delta method and variance estimation based on 

“dfbeta” influence statistics are used to derive the asymptotic 

variance estimates and confidence intervals for hazard ratios 

and event risk using Cox proportional hazards regression 

models with IPTW weighting, accounting for the variation in 

the propensity score-based weight estimates. It is assumed that 

the propensity scores are derived from a logistic regression 

model applied to the same cohort. The development 

accommodates multiple treatments, time-invariant or external 

time-dependent covariates, stratified cohort sampling study 

designs, and left truncation of the observations. 

2. Methods 

Consider an observational cohort including multiple 

treatments or other interventions that were decided upon, not 

randomized, and a time-to-event outcome variable. Further 

suppose it is desired to estimate the risk of an event occurring 

by a specified time using a Cox proportional hazards 

regression model with propensity score-based weights 

estimated from the cohort using a logistic regression model. 

Denote the regression parameter estimate for the Cox model 

with covariate vector 
(z β )

 by β̂.  The vector 
(z β )

may be 

time-invariant or externally time-dependent 
( (z z ( ),tβ β) )=

meaning that the time-dependence is fixed rather than 

deriving from repeated assessments of a subject’s covariate 

values over time. According to the model, the hazard for the 

event of interest at time t is ( )(
0) ( ) exp z ( ) ,t t t

βλ λ )( =  where 

0 ( )tλ  is the baseline hazard function. 

In conventional inverse-probability-of-treatment weighting 

(IPTW), the weight for subject 1,2, ,i n= …  is the inverse of 

the probability of (propensity for) use of the treatment 

received by subject .i  A multinomial logistic regression with 

generalized logit link function can be used to accommodate 

propensity estimation for 2K ≥ treatments. Using treatment 

K as the reference, let 
T

1 2 1
ˆ ˆ ˆ ˆα (α ,α , ,α )K

Τ Τ Τ
−= … be the vector 

containing all the maximum likelihood logistic regression 

parameter estimators, α̂k  being the vector of regression 

parameter estimators for treatment .k  The probability of 

receiving treatment k when the covariate value is 
(z α )

is 

estimated consistently by 
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Let ik  represent the treatment received by study subject i  

and 
(zi
α )

 be the subject’s covariate vector value (including 

the intercept). The estimated weight for subject i is 
(ˆ ˆ1 (z ).

ii k iw p
α )=  

Use of these weights allows the practitioner to estimate the 

population average treatment effect (ATE) and the average event 

risk. The estimates will be approximately unbiased under the 

assumption that there are no unmeasured confounders [1, 2]. 

Stabilization of the IPTW weights by multiplying them by 

the proportion 
ikπ  of study subjects who received the same 

treatment that subject i received is often recommended in 

order to avoid very high weights and resulting inflation of the 

variance of model parameter estimates [17, 18]. The 

stabilized weight used in the Cox regression is ˆ ˆ .
ii k iwω π=  If 

the data are from a stratified cohort sampling design with 

sampling weight is (the inverse of the stratum-specific 

sampling ratio) for subject i, then the calculation of the 
ikπ  

should reflect the sampling weights and the weight used in 

the Cox regression is ˆ ˆ .
ii i k is wω π=  This form of the weights 

will be used in the following development. If cohort 

sampling is not used, set 1.is ≡  If the propensity weights are 

not stabilized, set 1.
ikπ ≡  

For subjects with 1,ik K≤ −  the gradient of ˆ
iω  with 

respect to α̂  is  
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which, upon recognition of the form of 
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Pugh and colleagues developed an estimator for the 

covariance matrix of the Cox model regression parameters 

when a weighted analysis is used to adjust the regression 

parameter estimates for missing covariate values [19]. To 

make the adjustment, a logistic regression analysis is used to 

estimate the probability of missingness and a weight equal to 

the inverse of the estimated probability for each subject is 

used in the Cox regression. The estimated covariance matrix 

of the Cox model parameter accounts for the variability in the 

logistic regression-based weight estimates. This situation, in 

which the weights derive from the probability of 

missingness, is completely analogous to the use of IPTW 

weights that derive from the probability of receiving 

treatment. Using the form of Pugh’s estimator given by 

Therneau and Grambsch [20], page 166, the covariance 

matrix of β̂ is estimated consistently, accounting for the 

variance in both the Cox regression and the logistic 

regression for the propensity score-based weights, by 

( ) 1
T T T

ˆ ˆ ˆ ˆ ˆ ˆ ˆα α α αβ β β
V̂ D I D D D D D ,

− = − 
 

 

where 
β̂

D  is the matrix of dfbetas for β̂ and α̂D is the matrix 

of dfbetas for α̂  from the logistic regression model used to 

estimate the probability of treatment assignment. The thi row 
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of the dfbeta matrix closely approximates the change in the 

regression parameter estimate vector that would result from 

deleting subject i from the analysis set. Note that 
β̂

V̂ is the 

covariance matrix of the residuals of the linear regression of 

the β̂ dfbeta on the α̂ dfbeta, so the elements of β̂  estimated 

from the Cox regression model using the weights are 

asymptotically uncorrelated with the elements of α̂.  

The dfbetas for the Cox model can be computed from the 

score residuals and the Fisher information matrix. The score 

residual for subject i is 

{ }( (

0

ˆu z ( ) z ( ) d ( ),i i it t M tβ β∞ ) )= −∫  

where 
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and where 

( )T ( )
0

0

ˆˆ ˆ( ) ( ) ( ) exp β z ( ) d ( )
t

i i i iM t N t Y s s sβ= − Λ∫  

is the martingale residual process [20]. Here ( )iN t  is the 

event-counting process for subject ,i  ( )iY t  is the indicator 

for whether subject i  is in the risk set (having entered the 

study, accounting for left truncation, if any, and still being 

followed) at time ,t  and 
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1

0
T (0

1
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is the baseline cumulative hazard estimator. The thi row of 

the dfbeta matrix 
β̂

D  is T 1 ˆˆ u I (β),i iω − where ˆI(β) is the Fisher 

information matrix evaluated at the maximum partial 

likelihood estimate. ˆI(β) is the matrix of the negatives of the 

second derivatives of the log partial likelihood with respect 

to the regression parameter estimates. Its inverse is output by 

standard proportional hazard regression packages as the 

(naïve) model-based estimate of the covariance matrix of β̂.  

Using results from Czepiel [21] (see equation 32), the thi

row of the dfbeta matrix αD  for the multinomial logistic 

regression model is given by 

{ } { }( { } )( ( T ( ( T ( ( T
ˆ{ 1} 1 { 2} 2 { 1} 1 α

ˆˆ ˆ ˆ(z ) z , (z ) z , , (z ) z V ,
α α α α α α) ) ) ) ) )

= = = − −− − −…
i i ik i i k i i k K K i iI p I p I p  

where { }ik kI =  is the indicator for whether subject i  received treatment k and α̂V̂ is the estimated covariance matrix of the maximum 

likelihood logistic regression parameter estimator α̂, that is, the inverse of the Fisher information matrix. With stratified cohort sampling 

weighting, in which subject i is weighted by ,is the inverse of the sampling fraction for that subject’s stratum, the thi row becomes 

{ } { }( { } )( ( T ( ( T ( ( T
ˆ{ 1} 1 { 2} 2 { 1} 1 α

ˆˆ ˆ ˆ(z ) z , (z ) z , , (z ) z V ,
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where α̂V̂ is now the (naïve) model-based estimate of the covariance matrix of α̂ in the logistic regression using the cohort 

sampling weights. 

The estimated cumulative hazard at time t for a patient with covariate vector 
(z β )

is 

( ) ( )( T (
0

0

ˆˆ ˆ;z exp β z ( ) d ( ).
t

t s sβ β) )Λ = Λ∫  

The gradient of the increment in the baseline hazard at time t estimator with respect to the Cox regression parameter 

estimate vector is 

(
ˆ 0 0β

ˆ ˆd ( ) z ( )d ( ).t t tβ )∇ Λ = − Λ  

Thus, since the Stieltjes integral represents a finite sum, 
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The gradient of the increment in baseline hazard estimator at time t with respect to the logistic regression parameter estimate 

vector α̂ is 
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where α̂
ˆ

iω∇  is given in equations (1) and (2). This permits the computation of  

( ) ( )( T (
ˆ ˆ 0α α
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t s sβ β) )∇ Λ = ∇ Λ∫  

It is also necessary to account for the variability in the number and timing of events (the jumps in the event counting 

process). Let iT  be the end of follow-up for subject ,i  at which time either an event occurred ( )d ( ) 1i iN T =  or the subject’s 

time to event was censored ( )d ( ) 0 .i iN T =  Then  
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We saw previously that the elements of β̂ are asymptotically uncorrelated with the elements of α̂.  It is also known that β̂  is 

asymptotically uncorrelated with the number and timing of events [22]. Therefore, the variance of ˆ ;z)tΛ(  can be consistently 

estimated by 
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Transforming this estimator, the event risk at time t is estimated consistently by 
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and a level1 α− confidence interval for the risk at time t has endpoints 
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where Φ is the cumulative distribution function (CDF) of the standard normal distribution. 

In some situations, it may be appropriate to fit a Cox proportional hazards regression allowing a distinct baseline hazard 

function in each stratum of the population. If kS is the subset of patients in stratum ,k the baseline cumulative hazard function 

estimate for stratum k is 
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3. Simulation Studies 

The confidence intervals developed above are valid for 

large samples. To evaluate their performance in small and 

moderate samples, data sets were simulated with three 

treatments, a normally distributed score S and 5 other 

covariates 1 2 5, , , .z z z…  The probability of treatment was 

related to S with odds ratios 0.95 (treatment 1 vs. 3) and 1.05 

(treatment 2 vs. 3) and the 5 additional covariates with log 

odds ratios 
(1 .3) 1( 1) ln(0.9 ( 3) / 40)vs i
i iγ += − − − and 

(1 .3) ( 1) ln(0.9 ( 3) / 40).vs i
i iγ = − − −  These parameters resulted 

in approximately 20% of simulated subjects with treatment 1, 

20% with treatment 2 and 60% with treatment 3. 

In relation to the event risk, treatments 1 and 2 were given 

hazard ratios of 0.5 and 0.75 relative to treatment 3. The 

score S was associated with the risk of an event with a 

standardized hazard ratio of 2. The other covariates were 

given hazard ratios 
1

ln1.5,zβ =
2

ln1.4,zβ =
3

ln1.2,zβ =

4
ln1.05zβ =  and 

5
ln1.06.zβ =  

The covariate values for S and 1 2 5, , ,z z z…  were simulated 

using a multivariate normal distribution with correlations of 

0.5 between S and 1 ,z  0.6 between 2z  and 3 ,z 0.7 between 

4z and 5 ,z  and 0 between the other covariate pairs. 

Times to event were generated using the exponential 

distribution with hazard rate determined by the proportional 

hazards model. Random censoring was simulated using an 

independent exponential distribution, targeting a censoring 

rate of 75%. 

Data sets were simulated having specified numbers of 

events ranging from 40 to 160. 

For each data set, a multinomial logistic regression model 

with generalized logit link function was fit using the 

covariates 1 2 5, , , ,z z z…  and the propensity score for each 

subject was calculated from this model. Weighted Cox 

models were then fit (1) using effects for treatment, score and 

1 ,z  and (2) using effects for treatment, score and

1 2 5, , , .z z z…  For each model, 95% confidence intervals were 

computed for the hazard ratios for the score and each 

treatment. Confidence intervals were also computed for the 

event risk under scenarios reflecting the use of each 

treatment and a score value of -2, -1, 0, 1 or 2, with the other 

covariates fixed at 0. For each scenario, the event risk was 

estimated at a fixed time at approximately the 75
th

 percentile 

of the time-to-event in the population. The entire simulation 

process was replicated 1000 times. True coverage 

probabilities were estimated for each of the confidence 

intervals as the proportion of intervals calculated from the 

simulated data sets that included the true value. The 1000 

replicates give a precision of ±1.3% (half-width of a 95% 

confidence interval) for true coverage probabilities near the 

nominal level of 95%. Coverage probabilities were assessed 

using (1) conventional IPTW weights, (2) stabilized weights, 

(3) stabilized weights truncated at the 5
th

 and 95
th

 percentiles. 

For comparison, risk and hazard ratio estimates were 

computed without accounting for the variation in weights 

(treating the weights as fixed) and the geometric means of the 

ratio of the widths of confidence intervals with and without 

accounting for variation in the weights was computed. 

The weighted Cox regression analysis estimates the ATE, 

which is the marginal hazard ratio for treatment in the 

population, and, similarly, the marginal event risk in the 

population. Accordingly, the true marginal values were 

generated using methods similar to those described by Austin 

[4]: a very large sample of one million subjects was simulated 

using the methods described above and for each simulated 

subject, three independent time-to-event observations were 

generated, one for each treatment. A Cox proportional hazards 

regression model was applied to the resulting three million-

subject simulated data set, and the resulting estimated hazard 

ratios and event risks were used as the true values. 

Example true coverage probabilities for nominal 95% 

confidence intervals for risk using the stabilized weights are 

shown in Figure 1 (40 events), Figure 2 (80 events) and Figure 3 

(160 events). In each of these simulations, the Cox model 

included terms for treatment indicators (1 vs. 3 and 2 vs. 3), score 

and 1.z  Covariates 2 3 4, ,z z z  and 5z were omitted from the Cox 

model but included in the logistic regression model for treatment 

propensity. True coverage probability estimates are shown for the 

method accounting for variability in the weights and for the 

method treating the weights as fixed. With a small data set of 40 

events, the bare minimum necessary to meet the threshold of 10 

events per covariate [23], the method accounting for weight 

variability gives coverage probabilities at or above the nominal 

level of 95% whereas the method treating the weights as fixed 

generally gives substantially sub-nominal coverage levels. With 

80 events, accounting for weight variability gives intervals at or 

above nominal level; confidence intervals treating weights as 

fixed have true coverage probabilities closer to nominal level than 

with 40 events but still noticeably anti-conservative in some cases. 

With 160 events, accounting for the weight variability gives 

intervals with true coverage levels higher than nominal 

(approximately 97%) and treating the weights as fixed gives 

coverage probabilities at the nominal level. Accounting for the 

variability in the weights, true coverage probabilities for the 

marginal hazard ratios for the score and treatment were at or 

above nominal levels except for a few instances with very small 

samples, whereas treating the weights as fixed gave true coverage 

probabilities that were noticeably below nominal level even with 

larger samples (Figure 4). 

True coverage probabilities from simulations including 

treatment, the score and all five prognostic variables 

1 2 5, , ,z z z…  in the Cox model and including the score and 

1 2 5, , ,z z z…  in the logistic regression model are shown in 

Figure 5 (80 events, the minimum necessary to attain 10 events 

per covariate), Figure 6 (120 events) and Figure 7 (160 events). 

Here the coverage probabilities tend to be somewhat 

conservative (higher than nominal) for the intervals accounting 

for the variability in the weights and somewhat anti-conservative 

(lower than nominal) for the intervals treating the weights as 

fixed. Coverage probabilities for confidence intervals for hazard 

ratios for this model are shown in Figure 8. The method 
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accounting for variability in the weights generally had coverage 

probabilities at or above nominal level except for one treatment, 

which had anti-conservative coverage probabilities for most 

sample sizes. Coverage probabilities for confidence intervals not 

accounting for weight variability were generally anti-

conservative. 

  

  

  
Figure 1. Simulation results for 40 events. Cox model with effects for treatment indicators, score S  and covariate .1z  Propensity scores from multinomial 

logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals (CI) for risk and CI width 

ratios for specified covariate values. 
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Figure 2. Simulation results for 80 events. Cox model with effects for treatment indicators, score S  and covariate .1z  Propensity scores from multinomial 

logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals (CI) for risk and CI width 

ratios for specified covariate values. 
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Figure 3. Simulation results for 160 events. Cox model with effects for treatment indicators, score S and covariate .1z  Propensity scores from multinomial 

logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals (CI) for risk and CI width 

ratios for specified covariate values. 
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Figure 4. Simulation results for hazard ratio CI coverage probabilities. Cox model with effects for treatment indicators, score S and .1z  Propensity scores 

from multinomial logistic regression model with effects for , , , .1 2 5z z z… . Stabilized weights. 
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Figure 5. Simulation results for 80 events. Cox model with effects for treatment indicators, score S  and covariates , , , .1 2 5z z z…  Propensity scores from 

multinomial logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals (CI) for risk and 

CI width ratios for specified covariate values. 
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Figure 6. Simulation results for 120 events. Cox model with effects for treatment indicators, score S  and covariates , , , .1 2 5z z z…  Propensity scores from 

multinomial logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals (CI) for risk and 

CI width ratios for specified covariate values. 
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Figure 7. Simulation results for 160 events, Cox model with effects for treatment indicators, score S and covariates , , , .1 2 5z z z…  Propensity scores from 

multinomial logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. Coverage probabilities of 95% confidence intervals for risk and 

confidence interval width ratios (accounting for weight variance versus not) for specified covariate values. 
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Figure 8. Simulation results for hazard ratio CI coverage probabilities. Cox model with effects for treatment indicators, score S and covariates , , , .…1 2 5z z z  

Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…  Stabilized weights. 
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Simulations were also conducted for analyses that did not 

stabilize the weights. In these analyses, the weight was 

simply the inverse propensity for selection of the treatment 

received without multiplying by the overall frequency of that 

treatment. Consequently, simulated subjects with treatments 

1 and 2 tended to have higher weights in the analysis than 

those with treatment 3. True coverage probabilities for 

confidence intervals from analyses conducted without 

stabilizing the weights are shown in the Appendix, Figures 

A1 through A4. They are less consistent than the coverage 

probabilities when stabilized weights were used, sometimes 

being more conservative and sometimes more anti-

conservative. Without accounting for the variability of the 

weights, the coverage probabilit (ies of confidence intervals 

were often well below nominal level, especially for small 

samples. 

Simulations that used stabilized weights that were 

truncated at the 5
th

 and 95
th

 percentiles are shown in the 

Appendix, Figures A5 through A8. True coverage 

probabilities for confidence intervals computed using these 

weights were at or above nominal level and tended to be 

slightly less conservative than the intervals computed without 

truncation. 

The logistic regression models for treatment 

propensity used in the primary simulations did not 

include covariates related to treatment selection but not 

to the event of interest. It is generally not helpful to 

include such covariates in propensity score models, as 

they tend to decrease the precision of the subsequent 

estimation (here, using the weighted Cox regression) 

without decreasing their bias [18, 24]. However, it is not 

uncommon for practitioners to include covariates in the 

logistic regression model that are associated with the 

probability of receiving treatment but not associated with 

event risk. To cover this situation, simulations were 

conducted using the same configuration as above but in 

which covariates 2 3 4, ,z z z and 5z were associated only 

with the probability of treatment, not event risk. The 

results are shown in the Appendix Figures A9 through 

A13. The true coverage probabilities for the confidence 

intervals for risk are still at or above the nominal level 

for all but the smallest data set. True coverage 

probabilities for the confidence intervals for the hazard 

ratios were noticeably anti-conservative for some of the 

lower sample sizes. 

Accounting for the variation in weights substantially 

increased the width of the confidence interval widths 

relative to treating weights as fixed with width ratios as 

high as 140% when estimating risks for low scores, that is, 

when the risk estimate itself tended to be low. When the 

estimated risk is low, the confidence interval widths also 

tend to be low, so the net effect on the absolute confidence 

interval width will not be large. Interval width ratios were 

much closer to 100% (little change in width from 

accounting for variation in weights) for estimates 

associated with higher scores. 

4. Discussion 

Overall, the simulation studies indicate that the 

confidence intervals accounting for the variation in weight 

estimation have true coverage probabilities at or 

somewhat above the nominal level. Treating the weights 

as fixed led to substantially anti-conservative coverage 

probabilities when sample sizes were small. Stabilization 

of the IPTW weights by multiplying them by the overall 

average probability of treatment substantially improved 

the coverage probability of confidence intervals 

accounting for the variation in the weight estimates. 

Truncation of the weights at the tails does not adversely 

affect the true coverage probabilities and may make them 

less conservative in some cases. 

The results of previous work using simulations 

suggested that treating the weights as fixed and using the 

robust variance estimator of Lin and Wei [3] gives hazard 

ratio confidence intervals with higher than nominal 

coverage probability [4, 10]. The results presented here 

suggest the opposite: at least for smaller samples, treating 

the weights as fixed leads to confidence intervals with 

anti-conservative true coverage probabilities, sometimes 

substantially so. One factor that may explain the 

difference in simulation results is sample size. Austin [4] 

simulated data sets with 10 covariates and sample sizes of 

over 9000; Hajage and colleagues [10] simulated data sets 

with just one covariate (treatment indicator) and sample 

sizes of 10,000. The primary simulations presented here 

used much smaller data sets so as to evaluate the small 

and moderate-sample properties of the risk and hazard 

ratio confidence intervals. The method for simulating 

treatment assignment may also have led to differences in 

this work versus previous work in the hazard ratio 

confidence interval coverage probabilities. Austin [4] used 

simulated data sets in which each subject received 

treatment or no treatment and fixed the percentage of 

subjects who received treatment at various values ranging 

from less than 10% to 50%. Hajage [10] allowed the 

proportion of simulated subjects receiving treatment to 

vary as a Bernoulli random variable. In those simulations, 

the coverage probabilities for hazard ratio confidence 

intervals treating the weights as fixed were conservative 

when probability of treatment was 50% but at or below 

nominal levels when probability of treatment was 25% or 

10%. The simulations conducted here considered 3 

treatments with assignment modeled as a multinomial 

random variable with probabilities 20%, 20% and 60%. 

Finally, the current simulations used a higher censoring 

rate (approximately 75%) than those described by Hajage 

(0% or 50%) [10]. Austin [4] does not describe censoring 

in the simulations. Considering all the simulation work 

together, it seems fair to say that treating weights as fixed 

and using the robust variance estimator may result in 

either conservative or anti-conservative confidence 
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intervals for hazard ratios. 

Austin [4] suggested using the bootstrap, with 

replication of the entire process of fitting the logistic 

regression model, deriving the weights, and fitting the 

weighted Cox model, and showed that this gives 

confidence intervals for hazard ratios with coverage 

probabilities at nominal level. The bootstrap may not be 

practical, however, if the data set to be analyzed is very 

large since each model fit may take substantial compute 

time and resource. Also, bootstrap confidence intervals 

are not in general fully reproducible since they are based 

on random resampling and since random number 

generators differ across computer operating systems. For 

pre-planned analyses using the bootstrap, reproducibility 

of the results can be obtained by drawing the bootstrap 

sample in advance and archiving it. This option may not 

be available for post-hoc or exploratory analyses. If the 

only goal of fitting the Cox model is the estimation of 

the treatment effect hazard ratio, time-invariant 

covariates are used and stratified cohort sampling is not 

used, then the method of Hajage and colleagues [10] 

provides a viable analytic alternative. When risk 

estimation is a goal of the analysis, stratified cohort 

sampling or external time-dependent covariates are used 

in the Cox model, or left truncation is a feature of the 

data, the closed form confidence intervals described here 

provide a useful alternative to the bootstrap that is 

practical and always fully reproducible. 

5. Software 

A SAS macro that carries out the methods described here is 

available in the repository https://mcrager.github.io/SAS-

macros/. This macro fits the specified logistic regression and 

weighted Cox models and provides estimates of the risk of an 

event on or before a specified time for specified covariate 

values as well as the Cox regression parameter (log hazard 

ratio) estimates, their standard errors and p-values from Wald 

tests of the null hypothesis that the log hazard ratio is zero, all 

accounting for the variability of the estimated weights. In 

addition, the macro provides assessments of the balance of 

covariates across treatments (or other interventions as 

specified) using standardized differences. 

6. Conclusion 

When using propensity scores and IPTW weighting in a 

Cox proportional hazards regression, failure to account for 

the variability in the propensity score estimation can lead to 

hazard ratio and event risk confidence intervals with true 

coverage probabilities substantially below nominal levels. 

The methods described here account for the propensity score 

estimation variation in closed form and provide confidence 

intervals with coverage probabilities at or above nominal 

levels. The methods accommodate weighted analyses from 

stratified cohort sampling studies, external time-dependent 

covariates and left truncation. Software to carry out the 

calculations is freely available. 
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Appendix 

  

  

  

Figure A1. Simulation results using conventional IPTW weights (not stabilized) for 40 events. Cox model with effects for treatment indicator, score S and .1z  

Propensity scores from multinomial logistic regression model with effects for , , , , .1 2 3 4 5z z z z z . Coverage probabilities of 95% confidence intervals (CI) for risk 

and CI width ratios for specified covariate values. 
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Figure A2. Simulation results using conventional IPTW weights (not stabilized) for 80 events. Cox model with effects for treatment indicators, score S and 

.1z  Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…  Coverage probabilities of 95% confidence intervals (CI) for 

risk and CI width ratios for specified covariate values. 
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Figure A3. Simulation results using conventional IPTW weights (not stabilized) for 160 events. Cox model with effects for treatment indicators, score S and 

.1z  Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…  Coverage probabilities of 95% confidence intervals (CI) for 

risk and CI width ratios for specified covariate values. 
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Figure A4. Simulation results using conventional IPTW weights (not stabilized) for hazard ratio CI coverage probabilities. Cox model with effects for 

treatment indicators, score and za1. Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…   



 American Journal of Applied Mathematics 2022; 10(5): 176-204 196 

 

  

  

  

Figure A5. Simulation results using stabilized weights truncated at 5th, 95th percentiles, for 40 events. Cox model with effects for treatment indicators, score S

and .1z  Propensity scores from multinomial logistic regression model with effects for , , , , .1 2 3 4 5z z z z z  Coverage probabilities of 95% confidence intervals (CI) 

for risk and CI width ratios for specified covariate values. 
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Figure A6. Simulation results using stabilized weights truncated at 5th, 95th percentiles, for 80 events. Cox model with effects for treatment indicators, score S

and .1z  Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…  Coverage probabilities of 95% confidence intervals (CI) 

for risk and CI width ratios for specified covariate values. 
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Figure A7. Simulation results using stabilized weights truncated at 5th, 95th percentiles, for 160 events. Cox model with effects for treatment indicators, score 

S and .1z  Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…  Coverage probabilities of 95% confidence intervals 

(CI) for risk and CI width ratios for specified covariate values. 
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Figure A8. Simulation results using stabilized weights truncated at 5th, 95th percentiles for hazard ratio CI coverage probabilities. Cox model with effects for 

treatment indicators, score and za1. Propensity scores from multinomial logistic regression model with effects for , , , .1 2 5z z z…   
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Figure A9. Simulation results using covariates in the logistic regression that are not associated with risk, 40 events. Cox model with effects for treatment 

indicators, score and .1z  Propensity scores from multinomial logistic regression model with effects for , , , ,1 2 5z z z…  with only 
1z  associated with risk. 

Stabilized weights.  
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Figure A10. Simulation results using covariates in the logistic regression that are not associated with risk, 80 events. Cox model with effects for treatment 

indicators, score and .1z  Propensity scores from multinomial logistic regression model with effects for , , , ,1 2 5z z z…  with only 
1z  associated with risk. 

Stabilized weights. 
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Figure A11. Simulation results using covariates in the logistic regression that are not associated with risk, 160 events. Cox model with effects for treatment 

indicators, score and .1z Propensity scores from multinomial logistic regression model with effects for , , , ,1 2 5z z z…  with only 
1z  associated with risk. 

Stabilized weights. 
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Figure A12. Simulation results using covariates in the logistic regression that are not associated with risk, hazard ratio CI coverage probabilities. Cox model 

with effects for treatment indicators, score and .1z Propensity scores from multinomial logistic regression model with effects for , , , ,1 2 5z z z…  with only 
1z  

associated with risk. Stabilized weights.  
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