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Abstract 

Partial Differential Equations are used in smoothening of images. Under partial differential equations an image is termed as a 

function; f(x, y), XÎR2
. The pixel flux is referred to as an edge stopping function since it ensures that diffusion occurs within the 

image region but zero at the boundaries; ux(0, y, t) = ux(p, y, t) = uy(x, 0, t) = uy(x, q, t). Nonlinear PDEs tend to adjust the quality 

of the image, thus giving images desirable outlooks. In the digital world there is need for images to be smoothened for broadcast 

purposes, medical display of internal organs i.e MRI (Magnetic Resonance Imaging), study of the galaxy, CCTV (Closed Circuit 

Television) among others. This model inputs optimization in the smoothening of images. The solutions of the diffusion equations 

were obtained using iterative algorithms i.e. Alternating Direction Implicit (ADI) method, Two-point Explicit Group Successive 

Over-Relaxation (2-EGSOR) and a successive implementation of these two approaches. These schemes were executed in 

MATLAB (Matrix Laboratory) subject to an initial condition of a noisy images characterized by pepper noise, Gaussian noise, 

Brownian noise, Poisson noise etc. As the algorithms were implemented in MATLAB, the smoothing effect reduced at places 

with possibilities of being boundaries, the parameters Cv (pixel flux), Cf (coefficient of the forcing term), b (the threshold 

parameter) alongside time t were estimated through optimization. Parameter b maintained the highest value, while Cv exhibited 

the lowest value implying that diffusion of pixels within the various images i.e. CCTV, MRI & Galaxy was limited to enhance 

smoothening. On the other hand the threshold parameter (b) took an escalated value across the images translating to a high level 

of the force responsible for smoothening. 
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1. Introduction 

Partial differential equations (PDE’s) [22] describe fun-

damental laws of physics. Examples: Hydrodynamics - Na-

vier Stokes equations. Electrodynamics - Maxwell’s equa-

tions. Thermodynamics - Diffusion equation. Quantum Me-

chanics - Schr ödinger equation. Typically, these equations 

determine the evolution of a scalar or vector field that de-

pends on space and time [31]. Steady state problems in two 

or three spatial dimensions are also described by PDE’s. 

PDEs got some basic properties including; 

a) Linearity: Express the PDE in terms of a differential 
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operator, 

u f                     (1) 

f , is a function of the independent variable. 

2 2
2

2 2
...

 
    

 x y
  

Linearity means that  is a linear operator: For any func-

tion u and v  

( )u v u v      and ( ) ( )cu c u  , c is a constant 

b) Homogeneity, a PDE is homogeneous if it can be ex-

pressed as 0u  . The PDE is inhomogeneous if it has a so 

called source term: u f  , where f  is some function of 

the independent variables (e.g. Poisson’s equation in electro-

statics). Note that one can add solutions of the homogeneous 

PDE to the inhomogeneous solution. If a PDE is both linear 

and homogeneous then it obeys the principle of superposition: 

If f  and g  are two solutions of a linear, homogeneous 

PDE, then 1 2c f c g is also a solution, where 1 2,c c  are 

some constants. 

In order to have a well defined problem we not only need 

the partial differential equation that governs the physics, but 

also a set of boundary conditions (BC) and initial conditions 

(IC) to specify the problem. e.g. Heat equation for an insu-

lated bar with its two ends immersed in heat baths [21] Typ-

ical boundary conditions: 

Dirichlet boundary conditions: The value of the function 

is specified at the boundary. e.g. temperature of heat bath. 

von Neumann boundary conditions: The normal gradient 

of the function is specified at the boundary. e.g. the electric 

field from a given potential at the boundary. 

Cauchy boundary conditions: Both Dirichlet and von von 

Neumann boundary conditions are specified. 

There are usually two different problems that arise in 

physics: 

Initial value problem: This deals with time evolution of u . 

At a certain time 0t , the value of u  (and possibly its de-

rivative) is identified [29]. 

Boundary value problem: Steady state, time independent 

problems. The value of u  and/or its derivative is deter-

mined along a boundary that encloses the region of interest. 

e.g. electrostatic problems where the potential at the bounda-

ries is specified. In some cases can also have open bounda-

ries. 

The applications of partial differential equations (PDEs) to 

computer vision and image processing started as early as the 

1960s [11]. However, this technique did not take root until 

the introduction of the concept of scale space by Koenderink 

[19] and Witkin [30] in the 1980s. Perona and Malik’s work 

on anisotropic diffusion [26] further drew great interest from 

researchers towards PDE-based methods. Nowadays, PDEs 

have been successfully used to model image processing and 

computer vision [10, 8]. There are three methods used to 

design PDEs. For the first method, PDEs are written down 

directly, based on some mathematical understandings on the 

properties of the PDEs (e.g., anisotropic diffusion [26], 

shock filter [23] and curve evolution based equations [28]. 

The second methods basically define an energy functional 

first, which collects the wish list of the desired properties of 

the output image, and then derives the evolution equations by 

computing the Euler-Lagrange equation of the energy func-

tional [15]). The third kind of methods are axiomatic ap-

proaches, which first prescribe the properties, i.e., axioms, 

that the PDEs should hold and then deduce the form of PDEs 

from these axioms (e.g., Alvarez et al.’s axiomatic formula-

tion of the scale-space theory [1]). All of these methods re-

quire both good insight to what properties to hold and high 

mathematical skills, in order to acquire the desired output. 

Consider a diffusion equation coupled to chemical reac-

tions modeled by a nonlinear term ( )f u ; 

2 ( )
u

u f u
t




  


           (2) 

This is a physical process composed of two individual 

processes: u is the concentration of a substance that is lo-

cally generated by a chemical reaction ( )f u , while u  is 

spreading in space because of diffusion [25]. There are ob-

viously two time scales: one for the chemical reaction and 

one for diffusion. Typically, fast chemical reactions require 

much finer time stepping than slower diffusion processes [5]. 

It could therefore be advantageous to split the two physical 

effects in separate models [12] and use different numerical 

methods for the two. A natural spitting in the present case is; 

*
2 *u
u

t



 


              (3) 

**
**( )

u
f u

t





               (4) 

Non-linear Diffusion equations can be applied to initially 

given images. Let the image to be processed be,
0 0( , ), : , nx y     is a domain in space.  is a 

surface and 2n  . Introducing time t  this image deforms 

in a partial differential evolution equation (3) according to; 

[ ( , , )]F x y t
t


 


          (5) 

where: 

 ( , , ) : 0,x y t T    is the evolving image [20] 

:F   is an operator that characterizes the given algo-
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rithm. The solution of this differential equation gives the 

processed image at scale t [27]. 

Perona et al [26] transformed the diffusion equation from 

linear to non- linear restoring borderlines. Currently the fol-

lowing nonlinear PDE is used, 

.( ( * ) ) 0t ww f G w             (6) 

( , )w t y  is an unknown function defined in 

 0,TR T   

This equation is accompanied by Neumann boundary con-

ditions and initial conditions; 

0,
w

v





on I   0(0, ) ( )w y w y  in   

w , the unit normal vector to the boundary of  . As-

suming that 
d , a bounded rectangular domain 

 0,J T , a scaling interval, 

0:g   , a non-increasing function, 

g s  is smooth, 

(0) 1, ( ) 0,g g s s   , 

( )d

G C


 , a smoothing kernel (e.g. the Gauss func-

tion), 

,( ) 1,

( ) , 0,

d

d

y

G y dy G dy C

G y

  

  

  

 

 
       (7) 

y is the Dirac measure at the point, 0, ( )y w L   

This research modeled an equation of nonlinear diffusion 

for image processing, optimized the nonlinear heat equation. 

The objectives of this research was to; optimize the nonlinear 

heat equation, establish viable values for , ,v fC C b that en-

hance the image smoothening process. 

2. Materials and Methods 

Digital images are given on discrete (regular) grids [13]. 

This lends itself for discretizing the diffusion equation to 

obtain numerical schemes [24] that can be solved using 

MATLAB. The considered numerical schemes are stable and 

efficient. 

As the numerical algorithms are executed in MATLAB, 

Optimization is done to establish the most appropriate values 

of , , ,v fC C b t . These values are responsible for smoothen-

ing of images that are initially noisy [14]. 

A model below was used in this research; 

2 2

2 2
(1 )( )v f

u u u
c c u u u b

t x y

   
         

       (8) 

2.1. Numerical Approaches 

There is a wide body of literature on the numerical solu-

tion of PDE’s [7]. Many algorithms are available including: 

Finite difference method which is the most common ap-

proach. Based on approximating derivatives by finite differ-

ences. e.g. 
1( , )

n n
j ju uu x t

t x

 


 
 

where ( , )n
ju u j x n t   . 

Finite Element method: Basic idea is to divide volume of 

selected region into discrete pieces (polygons) and approxi-

mate the solution by simple functions on these pieces. Com-

plex geometries whose boundaries are curved are easily im-

plemented too. It is therefore common among engineers to 

model solids and structures. 

Spectral methods: Approximate the solution and the 

boundary condition with a Fourier series and substitute into 

the PDE. Use the inverse Fast Fourier transform to compute 

the Fourier coefficients of the solution. 

Monte Carlo: Use stochastic methods to find solutions of a 

PDE. 

The fact that linear PDEs fall into three canonical forms 

[17] is not of importance from computational point of view. 

What is relevant whether we are dealing with; 

Time evolution - Initial value problem: Wave equation, 

diffusion equations. Compute the time evolution for a given 

initial condition subject to boundary conditions. 

Static solution - Boundary value problem: Laplace equa-

tion, Poisson equation: Find solutions that satisfy the bound-

ary conditions around the region of interest. 

Because of the way the boundary conditions need to be 

enforced, the numerical methods will be different for these 

two types of problems. In boundary value problems one 

cannot “integrate in from the boundary” [18] in the same 

sense one can “integrate forward in time” for initial value 

problems. For static problems the goal of the numerical 

method is to converge on the correct solution everywhere at 

once. 

To apply numerical methods of solution to a domain it 

must be divided into equal spaced points. An example of a 

rectangular 2D domain can be an image or a photograph. 

2.1.1. Alternating Direction Implicit (ADI) Method 

The numerical discretization in time was conducted using 

the Alternate Direction Implicit method The merit of using 

the ADI method is good stability even when there is alarge 

convection to diffusion ratio (i.e. large Peclet number, P e > 

2), which is typically the case for pultrusion. 

Alternating direction implicit (ADI) methods modify 

Crank-Nicolson to maintain convergence but introduce the 
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tridiagonal matrices which are more efficient [4]. 

The ADI methods are based on a factored form. The fac-

tors are used to split each full timestep into two partial 

timesteps [9]. The equation for ADI below was used to solve 

the non-linear diffusion equation in MATLAB; 

1 1 1

2 2 2
, , 1 , , 1 , , ,1, 1,

1 1 1

1 1 1 2 2 2
, 1 , , 1 , , , ,1, 1,

(1 2 ) (1 2 ) (1 )( )

(1 2 ) (1 2 ) (1 )( )

n n n
n n n n n n

i j i j i j i j f i j i j i ji j i j

n n n
n n n n n n
i j i j i j i j f i j i j i ji j i j

u u u u u u C u u u b

u u u u u u C u u u b

     

     

  

  

  
  
   

         

          
          (9) 

2.1.2. Two-Point Explicit Group Successive Over-Relaxation (2-EGSOR) 

2-EGSOR iterative method can be displayed in a grid as below: 

 
Figure 1. Grid points in 2-EGSOR. 

The following equation was used in MATLAB to smoothen sampled noisy images of CCTV, MRI & Galaxy nature 

1 1 1
, , , 1 , 1 1,

, , ,1 1
1 1, 1, 1, 1 1, 1 2,

( )
(1 )( )

(

n n n n n
i j i j v i j i j i jv n n n

f i j i j i jn n n n n
v i j i j v i j i j i j

u u C u u uC
C u u u b

C u u C u u u





  
  

 
      

      
       
         

         (10) 

2.2. Optimization 

Let 
2

 denote a subset of the plane and 

(., ) :I t  be a family of gray scale images, and then 

anisotropic diffusion is defined as; 

 ( , , ) . ( , , )
c

I
div c x y t I I c x y t I

t


     

      (11) 

 , Laplacian 

 , gradient 

(......)div , divergence operator 

( , , )c x y t , Diffusion coefficient controls the rate of diffu-

sion [16] and is usually chosen as a function of the image 

gradient so as to preserve edges in the image [3]. 

Perona et al [26] pioneered the idea of anisotropic diffu-

sion and proposed two functions for the diffusion coefficient: 

   
2

c I I Ke


           (12) 

And 

 
 

2

1

1
c I

I K
 

 
       (13) 

K  Controls the sensitivity to edges and is chosen exper-

imentally or as a function of the noise in the image. 

Let M denote the manifold of smooth images, then the 

diffusion equations presented above can be interpreted as the 

gradient descent equations for the minimization of the energy 

[6] function :E M   defined by, 
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 21
( ) ( )

2
E I g I x dx



           (14) 

Where :g   is a real-valued function which is in-

timately related to the diffusion coefficient. Then for any 

compactly supported infinitely differentiable test function h , 

 2

0 0

1
[ ] ( )( )

2t t

d d
E I th g I th x dx

dx dx  

      (15) 

 2
( ) .g I x I hdx



     

 2
( ( ) )div g I x I hdx



     

The last line of [15] follows from multidimensional inte-

gration by parts [2]. Letting iE  denote the gradient of E  

with respect to 2 ( , )L   the inner product evaluated at I , 

this gives; 

 2
( ( )IE div g I x I            (16) 

Thus, the gradient descent equations on the function E  

are given by; 

  2
( ) )I

I
E div g I x I

t


    


    (17) 

Thus by letting c g  the anisotropic diffusion equations 

are obtained. 

Optimization was done for (8) using the objective func-

tion; 

2
,( )v f v fT c c b c c             (18) 

vc , pixel flux 

fc , Coefficient of theForcing term 

b , the threshold parameter 

The minimized values of , ,v fC C b  were applied in the 

numerical schemes of ADI and 2-EGSOR in MATLAB gen-

erating smoothened images. 

3. Results 

Parameter estimation gives the approximate values of time 

and the constants Cv, Cf and b in (8). 

3.1. Approximated Parameters Under EGSOR  

Table 1. Parameter estimation for MRI image under EGSOR. 

t Cv Cf b 

0 0.000125 0.005 4 

0.111111 0.00000006968 0.006957 4.626973 

0.222222 0.00000001597 0.007049 4.624980 

0.333333 0.0000003090288 0.006933 4.624997 

0.444444 0.0000002684966 0.006931 4.624979 

0.555555 0.000000213459 0.007012 4.624996 

0.666666 0.00000000845238 0.006977 4.624980 

0.777777 0.00000022759 0.006979 4.626915 

0.888888 0.00000000882199 0.06988 4.624981 

1 0.0000000413959 0.07018 4.624981 

 

Figure 2. Time against Cv, Cf and b for MRI image under EGSOR. 

 

Figure 3. Time against Cv, Cf and b for CCTV image under EG-

SOR. 
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Table 2. Parameter estimation for CCTV image under EGSOR. 

t Cv Cf b 

0 0.000008 0.005 6 

0.25 0.000000068621 0.011784 5.999747 

0.5 0.000000256962 0.011789 5.999747 

0.75 0.0000002491727 0.011791 5.999743 

1 0.000000157290 0.011793 5.999752 

3.2. Approximated Parameters Under ADI  

Table 3. Parameter estimation for MRI image under ADI. 

t Cv Cf b 

0 0.000125 0.005 4 

0.111111 0.000003 0.012811 4.000023 

0.222222 0.00000045924 0.012840 4.002498 

0.333333 0.00000002024 0.012792 4.000023 

0.444444 0.0000000731162 0.012818 4.002586 

0.555555 0.0000001149168 0.012883 4.000027 

0.666666 0.0000020747 0.012809 4.002546 

0.777777 0.0000002403366 0.012870 4.002569 

0.888888 0.001742 0.012647 4.000024 

1 0.000745 0.012642 4.011794 

 

Figure 4. Time against Cv, Cf and b for MRI image under ADI. 

Table 4. Parameter estimation for CCTV image under ADI. 

t Cv Cf b 

0 -0.000000068622 0.011784 5.999747 

0.25 0.00196019959 0.01607929220 5.999766 

0.5 0.00196019959 0.01607929220 5.999766 

t Cv Cf b 

0.75 0.00196019959102 0.01607929220 5.999766 

1 0.0196019959102702 0.01607929220 5.999766 

 

Figure 5. Time against Cv, Cf, b for CCTV image under ADI. 

4. Discussion 

From the graphs the parameter b which is the threshold 

parameter maintains the highest value as opposed to vC  

which is the pixel flux, it registers the lowest value implying 

pixel diffusion is limited in the smoothening process. On the 

other hand the forcing term coefficient fC is of moderate 

value, inputing minimum force into the image in the course 

of smoothening hence limiting blurring. 

5. Conclusion 

The paper sort to optimize parameters b , vC , fC . Parameter 

b  works best when optimized to the highest value as compared 

to vC , fC . Smoothening of images can be done well when 

parameters are minimized. I recommend use of other computer 

programs other than MATLAB in future optimization. 

Abbreviations 

MRI: Magnetic Resonance Imaging 

CCTV: Closed Circuit Television 

ADI: Alternating Direction Implicit  

2-EGSOR: Two-point Explicit Group Successive 

Over-Relaxation  

MATLAB: Matrix Laboratory 

PDEs: Partial differential equations  
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