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Abstract 

In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian 

estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared 

error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using 

both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior 

outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed 

priors. 
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1. Introduction 

The two-parameter Generalized Exponential (GE) distri-

bution has Probability Density Function (PDF) and Cumula-

tive Distribution Function (CDF), which are given respec-

tively as: 

𝑓(𝑥) = 𝛽𝛼𝑒−𝛽𝑥(1 − 𝑒−𝛽𝑥)𝛼−1            (1) 

𝐹(𝑥) = (1 − 𝑒−𝛽𝑥)𝛼           (2) 

 , 0   are shape and scale parameters respectively. 

When  =1, the GE distribution reduces to the standard 

exponential distribution. This distribution exhibits failure 

rates that are both increasing and decreasing depending on the 

shape parameter. [1] proved that the GE distribution can be 

used quite effectively in analyzing many lifetime datasets, 

particularly in place of the two-parameter gamma and Weibull 

distributions. Therefore, this distribution can also be used in 

situations where the course of disease is such that mortality 

reaches a peak after some finite period, and then slowly de-

clines as in the case of curable breast cancer. Therefore, this 

distribution can also be used in situations where the course of 

disease is such that mortality reaches a peak after some finite 

period and then slowly declines, as in the case of curable 

breast cancer. In recent years, an impressive number of stud-

ies have been written in both classical and Bayesian frame-

works addressing the behavioral patterns of the parameters of 

the GE distribution. A very good summary of this work can be 

found in [2-13] and the cited there for some recent develop-

ments on the GE distribution. 

The Bayesian deduction requires that the priors for the 

parameters be chosen adequately, since it is evident that there 

is no way to tell which prior is better than any other. However, 
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using the informative prior(s), which may be chosen over all 

other options, is preferable if we have sufficient knowledge 

about the parameter(s). This means that every conclusion 

drawn from the posterior distribution will vary based on the 

prior because the prior distribution's elicitation is based on 

human choice. To get around this problem, Bayesian analysis 

promoted the use of prior information other than data, such as 

knowledge of a related phenomenon or theories regarding 

potential values for the model's parameters or their physical 

meaning. 

In the last decade, several authors utilized technical in-

formation about the real systems and converted it into the 

degree of belief about the model parameters that improved the 

accuracy of estimates, see [14-16]. 

This paper presents a suitable prior based on the theory of 

statistical kernel density estimators, which improves the es-

timation compared to the informative conjugate priors for the 

GE distribution parameters. The layout of this paper is as 

follows: In Section 2, we derive the Bayes estimates for α and 

β for different priors under the Squared Error Loss and 

LINEX Loss Functions. Monte Carlo simulation results are 

presented in Section 3, which provides the performance of the 

Bayes estimators under the Squared Error and LINEX Loss 

Functions in terms of the mean square and mean percentage 

error. An illustrative example in Section 4 is to analyze a real 

data set for illustrative purposes. 

2. Bayesian Estimation 

2.1. Informative Kernel Prior 

For deriving the kernel prior, we should define the bivariate 

case, for the kernel density estimator for the unknown prob-

ability density function 𝑓(𝑥  ) with support on (   ), which 

is defined as follows: 

𝑓(𝑥  ) =
1

𝑛ℎ1ℎ2
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ1
 
𝑦−𝑦𝑖

ℎ2
)𝑛

𝑖=1              (3) 

1h  and 2h  are called the bandwidths or smoothing pa-

rameters which chosen such that 1 0h  , 𝑕2    and 

1nh  , 2nh  as    . The optimal choices for ih  

which minimize the mean squared errors are 𝑕𝑖 =     𝑖 
−1  , 

𝑖 = 1  , where iS  the sample standard deviations of the 

random variables X and Y respectively, see [17]. The optimal 

choice for the kernel function 𝐾(𝑥  ) can be used as the 

bivariate standard normal distribution. Also, [18] provides a 

good description of the kernel estimation methods. It is im-

portant to note that the kernel function has been used in in-

ference for the unknown parameters for some lifetime dis-

tributions, see [19-22]. 

As a tool for constructing the informative kernel prior, the 

pivotal quantities for the GE distribution parameters can be 

derived easily as follows: 

Let 𝛼̂ and 𝛽̂ be the MLEs of 𝛼 and 𝛽 respectively, thus 

we can easily write the functions: 

𝑍 = 𝛼 𝛼̂ and 𝑉 = (1 − 𝑒−𝛽𝑥𝑖 1 − 𝑒−𝛽̂𝑥𝑖⁄ )𝛼̂     (4) 

as pivotal quantities, which are functions of the MLEs and 

whose distributions are free of the unknown parameters. 

The MLEs of the GE distribution parameters are obtained 

by differentiating the logarithm of the likelihood function of 

(1) and equating to zero. Thus, the two normal equations have 

been given below: 

𝑛

𝛽
− ∑ 𝑥𝑖

𝑛
𝑖=1 + (𝛼 − 1)∑ 𝑥𝑖𝑒

−𝛽𝑥𝑖 (1 − 𝑒−𝛽𝑥𝑖)⁄𝑛
𝑖=1 =     

  𝛼 + ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 =     

Using an iterative technique such as the Newton-Raphson 

method for solving the above two equations, we can derive the 

MLEs from the first equation and then the MLEs from the 

second equation. 

The methodology of statistical kernel estimators is applied 

for constructing the kernel prior density with the following 

algorithm: 

1) Generate a random sample  = (𝑥1 𝑥2 𝑥3     𝑥𝑛) 

from the parent distribution 𝑓(𝑥 𝛼 𝛽)  with a given 

specified values for the parameters 𝛼 and 𝛽. 

2) Bootstrapping with replacement n samples 

 1
   2

   3
       𝑛

 , with size   each, where  𝑖
 =

(𝑥1
  𝑥2

  𝑥3
      𝑥𝑛

 )  for 𝑖 = 1          from the given 

random sample in step 1. 

3) For each sample in step 2, we can calculate the MLEs for 

the parameters 𝛼 and 𝛽, from which and (4) we can 

derive the pivotal quantities 𝑍 = ( 1  2      𝑛) , and 

𝑉 = ( 1  2      𝑛) whose distributions are free of the 

unknown parameters 𝛼 and 𝛽. 

4) Thus, based on the random variables 𝑍 and 𝑉 we can 

use the kernel estimator (3) for deriving the kernel den-

sity estimator for the density function of the pivotal 

quantities 𝑍 and 𝑉, which is a function of the unknown 

parameters 𝛼 and 𝛽 and their MLEs and is defined as 

𝑔(   )  and named as the informative kernel prior, 

where it contains all the information about the unknown 

parameters supplied by the sample. 

2.2. Informative Gamma Prior 

We propose the use of piecewise independent priors for 

both parameters, namely each of the unknown parameters 𝛼 

and 𝛽 has gamma distribution as given by: 

𝑔1(𝛼) =
𝑏𝑎

𝛤(𝑎)
𝛼𝑎−1𝑒−𝑏𝛼, 𝑎 𝑏 ≥  , and 𝑔2(𝛽) =

𝑑𝑐

𝛤(𝑐)
𝛽𝑐−1𝑒−𝑑𝛽 𝑐 𝑑 ≥  . 
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Thus, the joint prior distribution is given as follows: 

𝑔(𝛼 𝛽) ∝ 𝛼𝑎−1𝛽𝑐−1𝑒−𝑏𝛼−𝑑𝛽       (5) 

For 𝑎 = 𝑏 = 𝑐 = 𝑑 =  , we get the non-informative prior. 

Based on Bayes’ theorem the posterior density function can 

be defined as 

𝑓(𝜃| ) =
𝑔(𝜃)𝑙(𝜃 𝑋)

∫ 𝑔(𝜃)𝑙(𝜃 𝑋)𝑑𝜃𝜃
.           (6) 

Here 𝑔(𝜃) is the prior density function and 𝑙(𝜃  ) is the 

likelihood function. 

The Bayes estimators for the parameters   and   will be 

derived using the informative gamma prior and the 

non-parametric kernel prior, based on two different loss 

functions. 

Firstly, the Squared Error Loss Function (SELF), 

 ( ( )  ̂( )) = (𝑔(𝜃) − 𝑔̂(𝜃))
2
. For this loss function the 

Bayes estimator that minimizes the risk function is given by 

 ̂( ) =   ( ( )| ). 

Secondly, in practical applications, the underestimation of a 

parameter value very often implies different results from the 

overestimation, both in quality and quantity. Thus, these dif-

ferences can be explained by a linear function with separate 

coefficients for positive and negative errors. This function, 

which is also known as the LINEX Loss Function, is defined 

as an asymmetric loss function in the following form: 

𝐿(𝜃 𝜃 ) = 𝑒𝑥𝑝[ 𝛿(𝜃 − 𝜃 )] − 𝛿(𝜃 − 𝜃 ) − 1, 𝛿 ≠  . 

The direction and degree of symmetry are represented by the 

sign and magnitude of the shape parameter δ, respectively. Posi-

tive values indicate that overestimation is more serious than 

underestimation and vice versa for negative values. The value 

that minimizes the risk function, or the unique Bayes estimator 

𝜃 
  of 𝜃 under the LINEX Loss Function (LLF), is provided as 

𝜃 
 = −

1

𝛿
𝑙 [ 𝐸𝜃(𝑒

−𝛿𝜃)], 

provided the expectation 𝐸𝜃(𝑒
−𝛿𝜃) exists and is finite. 

Several authors have used this function, [14, 23]. However, 

Bayesian estimation under the LINEX Loss Function is not 

frequently discussed, perhaps, because the estimator involves 

integral expressions, which are not analytically solvable, and 

one must use numerical techniques. 

For the informative prior the joint posterior density is given 

by 

𝑓(𝛼 𝛽| ) = 𝐾𝛼𝑛+𝑎−1𝛽𝑛+𝑐−1 𝑒𝑥𝑝[ − 𝛼(𝑏 − ∑ 𝑙 ( 1 −𝑛
𝑖=1

𝑒−𝛽𝑥𝑖))]  

× 𝑒𝑥𝑝[ − 𝛽(𝑑 + ∑ 𝑥𝑖
𝑛
𝑖=1 ) − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛

𝑖=1 ]. 

The marginal posterior densities for the parameters can be 

evaluated as 

𝑔(𝛽| ) = 𝐾𝛤( + 𝑎)𝛽𝑛+𝑐−1 

× [𝑏 − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 ]−(𝑛+𝑎)  

× 𝑒𝑥𝑝[ − 𝛽(𝑑 + ∑ 𝑥𝑖) − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 ]𝑛

𝑖=1 . 

𝑓(𝛼| ) = 𝐾 ∫  
∞

0
𝛼𝑛+𝑎−1𝛽𝑛+𝑐−1  

× 𝑒𝑥𝑝[ − 𝛼(𝑏 − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 )]  

× 𝑒𝑥𝑝[ − 𝛽(𝑑 + ∑ 𝑥𝑖
𝑛
𝑖=1 ) − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛

𝑖=1 ]𝑑𝛽 . 

K is the normalizing constant and can be evaluated as 

𝐾−1 = 𝛤( + 𝑎) ∫  
∞

0
𝛽𝑛+𝑐−1  

× [𝑏 − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 ]−(𝑛+𝑎)  

× 𝑒𝑥𝑝[ − 𝛽(𝑑 + ∑ 𝑥𝑖) − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 ]𝑛

𝑖=1 . 

For the kernel prior the joint posterior density function is 

given by 

𝑓(𝛼 𝛽| ) = 𝐾𝑔(𝛼 𝛽)𝛼𝑛𝛽𝑛 

× 𝑒𝑥𝑝[ − 𝛽(𝑑 + ∑ 𝑥𝑖) − ∑ 𝑙 ( 1 − 𝑒−𝛽𝑥𝑖)𝑛
𝑖=1 ]𝑛

𝑖=1    

3. Simulation Study 

The purpose of the simulation study is to assess the per-

formance of Bayes estimates for two different loss functions 

that are obtained from informative gamma and informative 

kernel priors using the following two criteria, Mean Squared 

Error (MSE) and Mean Percentage Error (MPE), as given by: 

MS (𝜃 ) =
1

L
∑ (  1 −  )2 L
i=1  MP (  ) =

∑
|𝜃−𝜃 |

𝜃
𝑀
𝑖=1

𝑀
, 

𝜃  is the estimate of   and   is the number of replications. 

To assess the performance of these priors, the MSE and 

MPE for each prior were calculated using 1000 replications 

for each sample size under both the SELF and LLF. In the 

simulation study we generated several data sets for different 

combinations of the true paramter values of 𝛼 =     1 and 

2 and 𝛽  was set equal to 2 and 3 for sample sizes,  =

        and   , to represent small, moderate and large sizes. 

It is assumed that the hyperparameters for the informative 

prior are 𝑎 = 𝑐 =     and 𝑏 = 𝑑 =    . For the LINEX loss 

function, the shape parameter δ was set to ±1 and ±2. It may 

be mentioned here that, because of space restrictions, all 

results are not shown in the tables. 

From the simulation results in Tables 2, 3 and 4, some of 
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the points are quite clear based on the kernel and informative 

priors and the others have been summarized in the following 

main points: 

1) In general, the estimated MSE and MPE values based on 

the kernel prior are smaller than the ones based on the 

informative prior under both loss functions. 

2) As the sample sizes increase, the estimated MSE and 

MPE values for the estimates decrease based on both 

priors under the two loss functions. 

3) In most cases, the estimated MSE and MPE values for 

the parameter 𝛼 using the LINEX Loss Function are 

greater than the ones based on the Squared Error Loss 

Function and get smaller when the shape parameter of 

the LINEX Loss Function takes positive values based on 

the kernel prior and vice versa based on the informative 

prior. 

4) It may be noted that the results under the LINEX Loss 

Function with positive values of 𝛿 are smaller than the 

ones for negative values of 𝛿 except for the case when 

𝛽 =  , based on both priors. Moreover, these results are 

smaller than the ones under the Squared Error Loss 

Function for small values of 𝛼. Thus, there are different 

coefficients for positive and negative errors, which in fact 

proves that over and under estimation of the parameter 𝛿 

has different effects on the unknown parameters. 

5) The estimated MSE and MPE values for parameter 𝛼 

increase as the value of 𝛼 increases and decrease as the 

value of 𝛽 increases. 

6) The estimated MSE and MPE values for the parameters 

decrease as the hyperparameters of the informative prior 

decrease, keeping the prior mean close to one and the 

variation in prior variance close to half. 

7) In general, for parameter 𝛼 the estimated MSE values 

are less than the MPE values under the Squared Error 

Loss Function and the LINEX Loss Function, and that is 

true for most cases for the parameter 𝛽. 

From the results it appears that the proposed kernel prior 

competes and outperforms the informative prior under the 

Squared Error Loss Function and LINEX Loss Function. 

4. An Illustrative Example 

The data [23] presented here is from tests on endurance of 

deep groove ball bearings. The data presented are the number 

of million revolutions before failure for each of the 23 ball 

bearings in the life test and they are: 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 

51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 

98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

Figure (1a) indicates these data are good fit for the general-

ized exponential distribution. From the results in Table 1, the 

Bayesian estimates for   are close to 5, which indicates that 

the above dataset is moderately bell shaped, which means 

slightly decreasing the number of revolutions of the ball 

bearings before failure, see Figure (1 b). Also, the Bayesian 

estimates for  
 

are almost close to zero, which ensures this 

dataset is almost symmetric even with increasing time. Thus, 

this dataset ensures the strength of the ball bearings. 

 

Figure 1. a) The Empirical CDF and the fitted CDF for the data. b) 

The Histogram and the fitted PDF for the data. 

Figures 2 and 3 indicated that the posterior densities for α 

and β based on the kernel prior dominate the corresponding 

densities based on the informative prior, which ensuring the 

simulation results and the results in Table 1. 
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Table 1. The Bayes estimators (𝜃∘
 ) for the parameters 𝛼 and 𝛽 for different Priors and the Mean Square Errors (MSE), Mean Percentage 

Errors (MPE) under Squared Error Loss (SELF) and LINEX Loss functions (LLF) with 𝛿 = ± , ( The upper row for 𝛿 =  , the lower row for 

𝛿 = − ). 

Par. 

Kernel Prior Informative Prior 

 SELF LLF  SELF LLF 

𝜽𝑺
   MSE MPE 𝜽𝑳

   MSE MPE 𝜽𝑺
   MSE MPE 𝜽𝑳

   MSE MPE 

  5.1451 0.0181 0.0255 
5.0429 0.0559 0.0448 

5.2215 0.00334 0.0109 
5.0092 0.0730 0.05119 

5.0871 0.0371 0.0364 5.3834 0.0108 0.0197 

  0.0501 3.17E-04 0.5514 

0.0501 3.17E-04 0.5514 

0.0219 1.09E-4 0.3231 

0.0218 1.09E-4 0.3241 

0.0501 3.17E-04 0.5514 0.0219 1.08E-4 0.3221 

Table 2. The Mean Square Errors (MSE) and the Mean Percentage Errors (MPE) for the parameter   for different Priors, for 𝛼 =     1   

and 𝛽 =     under the Squared Error Loss (SELF) and LINEX Loss Functions (LLF) with 𝛿 =  . 

N 𝜶  𝜷  

Kernel Prior Informative Prior 

SELF LLF SELF LLF 

MSE MPE MSE MPE MSE MPE MSE MPE 

20 

0.5 
2 0.0147 0.1889 0.0119 0.1724 0.0399 0.2942 0.0317 0.2616 

3 0.0097 0.1596 0.0092 0.1564 0.0240 0.2254 0.0192 0.2035 

1 
2 0.0403 0.1624 0.0299 0.1419 0.0994 0.2340 0.0602 0.1850 

3 0.0332 0.1496 0.0382 0.1629 0.0572 0.1804 0.0399 0.1576 

2 
2 0.1047 0.1330 0.2145 0.2160 0.1253 0.1445 0.1581 0.1692 

3 0.2136 0.2113 0.3493 0.2849 0.1557 0.1662 0.2410 0.2195 

40 

0.5 
2 0.0085 0.1408 0.0076 0.1351 0.0147 0.1795 0.0128 0.1674 

3 0.0063 0.1285 0.0062 0.1288 0.0099 0.1480 0.0088 0.1402 

1 
2 0.0323 0.1395 0.0262 0.1289 0.0507 0.1672 0.0376 0.1465 

3 0.0249 0.1294 0.0262 0.1288 0.0348 0.1412 0.0286 0.1314 

2 
2 0.0749 0.1115 0.1128 0.1422 0.1136 0.1353 0.1155 0.1417 

3 0.1222 0.1496 0.1842 0.1946 0.1197 0.1431 0.1526 0.1687 

80 

0.5 
2 0.0042 0.1018 0.0040 0.0998 0.0055 0.1142 0.0051 0.1099 

3 0.0036 0.0955 0.0036 0.0961 0.0042 0.1017 0.0039 0.0992 

1 
2 0.0191 0.1091 0.0172 0.1049 0.0225 0.1167 0.0190 0.1086 

3 0.0158 0.1017 0.0163 0.1042 0.0179 0.1059 0.0162 0.1021 

2 

2 0.0615 0.1014 0.0718 0.1103 0.0745 0.1106 0.0721 0.1101 

3 0.0759 0.1140 0.0997 0.1347 0.0746 0.1117 0.0849 0.1208 

 

http://www.sciencepg.com/journal/sjams


Science Journal of Applied Mathematics and Statistics http://www.sciencepg.com/journal/sjams 

 

34 

Table 3. The Mean Square Errors (MSE) and the Mean Percentage Errors (MPE) for the parameter 𝛽 for different priors, for 𝛼 =     1   

and 𝛽 =     under the Squared Error Loss (SELF) and LINEX Loss Functions (LLF) with 𝛿 =  . 

N 𝜶  𝜷  

Kernel Prior Informative Prior 

SELF LLF SELF LLF 

MSE MPE MSE MPE MSE MPE MSE MPE 

20 

0.5 
2 0.1058 0.1307 0.2089 0.1975 0.2378 0.1877 0.1291 0.1465 

3 0.2622 0.1385 0.4410 0.1797 0.3327 0.1604 0.7407 0.2669 

1 
2 0.0878 0.1202 0.1419 0.1579 0.1784 0.1625 0.1155 0.1386 

3 0.2205 0.1294 0.3111 0.1506 0.2794 0.1461 0.5410 0.2208 

2 
2 0.0910 0.1233 0.1543 0.1734 0.0954 0.1257 0.1137 0.1415 

3 0.2002 0.1246 0.2443 0.1345 0.3129 0.1597 0.5664 0.2312 

40 

0.5 
2 0.0928 0.1247 0.2213 0.1883 0.1798 0.1657 0.1216 0.1428 

3 0.1837 0.1195 0.2467 0.1342 0.2769 0.1453 0.4592 0.1970 

1 
2 0.0768 0.1125 0.1739 0.1637 0.1257 0.1402 0.0971 0.1274 

3 0.1655 0.1142 0.1834 0.1175 0.2192 0.1289 0.3195 0.1600 

2 
2 0.0554 0.0963 0.1245 0.1384 0.0718 0.1096 0.0785 0.1161 

3 0.1555 0.1104 0.1527 0.1082 0.1981 0.1234 0.3045 0.1592 

80 

0.5 
2 0.0799 0.1130 0.1306 0.1411 0.1122 0.1327 0.0875 0.1214 

3 0.1525 0.1084 0.1713 0.1129 0.1921 0.1210 0.2504 0.1401 

1 
2 0.0597 0.0971 0.0906 0.1171 0.0758 0.1104 0.0644 0.1041 

3 0.1317 0.1002 0.1317 0.0993 0.1425 0.1040 0.1707 0.1144 

2 

2 0.0393 0.0803 0.0664 0.1007 0.0466 0.0887 0.0477 0.0901 

3 0.1169 0.0932 0.1097 0.0904 0.1132 0.0926 0.1474 0.1068 

Table 4. The Mean Square Errors (MSE) and the Mean Percentage Errors (MPE) for the parameters 𝛼 and 𝛽 for different priors, for 

𝛼 =     1   and 𝛽 =     under the LINEX Loss Functions (LLF) with 𝛿 = − . 

N 𝜶  𝜷  

Kernel Prior Informative Prior 

𝜶  𝜷  𝜶  𝜷  

MSE MPE MSE MPE MSE MPE MSE MPE 

20 

0.5 
2 0.0187 0.2100 0.1367 0.1479 0.0512 0.3334 0.7977 0.3477 

3 0.0109 0.1667 0.3049 0.1663 0.0306 0.2527 0.5771 0.1951 

1 
2 0.06899 0.2076 0.1086 0.1297 0.1797 0.3123 0.4297 0.2515 

3 0.0362 0.1544 0.2061 0.1289 0.0979 0.2274 0.4169 0.1659 

2 
2 0.0581 0.0976 0.0523 0.0914 0.3087 0.2099 0.1339 0.1419 

3 0.1053 0.1315 0.2291 0.1419 0.1862 0.1693 0.2158 0.1258 

40 0.5 
2 0.0046 0.1483 0.1367 0.1479 0.0171 0.1931 0.3777 0.2356 

3 0.0066 0.1295 0.1771 0.1135 0.0114 0.1573 0.4197 0.1685 
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N 𝜶  𝜷  

Kernel Prior Informative Prior 

𝜶  𝜷  𝜶  𝜷  

MSE MPE MSE MPE MSE MPE MSE MPE 

1 
2 0.0439 0.1597 0.1086 0.1297 0.0719 0.1969 0.2093 0.1769 

3 0.0262 0.1299 0.1217 0.0929 0.0465 0.1598 0.2876 0.1412 

2 
2 0.0755 0.1111 0.0523 0.0914 0.1990 0.1673 0.0846 0.1162 

3 0.0809 0.1164 0.1222 0.0961 0.1433 0.1475 0.1619 0.1097 

80 

0.5 
2 0.0045 0.1043 0.1026 0.1249 0.0059 0.1190 0.1745 0.1609 

3 0.0036 0.0953 0.1268 0.0959 0.0045 0.1048 0.2561 0.1335 

1 
2 0.0222 0.1159 0.0723 0.1045 0.0274 0.1274 0.1019 0.1252 

3 0.01596 0.1015 0.0945 0.0834 0.0207 0.1125 0.1715 0.1107 

2 

2 0.0673 0.1044 0.0387 0.0384 0.1021 0.1256 0.0516 0.0917 

3 0.0623 0.1017 0.0822 0.0785 0.0835 0.1159 0.1049 0.0887 

 

 
Figure 2. The posterior densities of alpha, the kernel (solid line) 

and the gamma (dashed line). 

 
Figure 3. The posterior densities of beta, the kernel (solid line) and 

gamma (dashed line). 

5. Conclusions 

In statistical inference Bayes method based on the in-

formative prior is more efficient than the other estimation 

methods. In this work, we used the informative kernel prior, 

which is more efficient and strongly unbiased than the in-

formative gamma prior for different loss functions. The effi-

ciency of the results based on the Kernel prior is statistically 

significant for researchers in the social sciences and psy-

chology. 
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