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Abstract: This paper devotes to the asymptotic behavior of all solutions of nth order impulsive differential equations. Based on
impulsive differential inequality, boundedness and zero tendency of every solution for nth order impulsive differential equations
are obtained. In addition, we derive globally uniformly exponential stability of every solution under Lyapunov function and
impulsive technique, and these results are extend to nth order differential equations with periodic coefficient and periodic impulse.
Meanwhile, an example with simulations are provided to verify the conclusion.
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1. Introduction
Due to the abrupt changes at certain moments, impulsive

effects are common phenomena in natural world. Such
phenomena are described by impulsive differential equations
which have been used efficiently in modelling many real world
problems that arise in the fields such as medicine, electronics,
and network [1–7]. The behavior of all solutions is an
important issue of impulsive differential equations. Therefore,
much effort has been made to investigate the oscillation criteria
and the asymptotic behavior of all solutions of impulsive
differential equations [8–16]. For instance, in [9], the authors
investigated the asymptotic behavior of solutions of second
order nonlinear impulsive differential equations. The authors
[14] obtained the results of Razumikhin and Krasovskii
stability of impulsive stochastic delay systems via uniformly
stable function method. However, the behavior results of
solutions for impulsive differential equations mainly focus on
first order impulsive differential equations and second order
impulsive differential equations. For higher order impulsive
differential equations, the asymptotic behavior and stability of
solutions has been little discussed.

Motivated by the above discussions, this paper is to study
the asymptotic behavior of n order impulsive differential
equations. By constructing appropriate Lyapunov functions

and impulsive technique, the bounded property and zero
convergence of every solution are obtained, which means that
impulsive effects play an essential role in the behavior of nth
order impulsive differential equations. Meanwhile, an example
with simulations is provided to demonstrate the applicability of
our results.

The rest of this paper is organized as follows. nth order
impulsive differential equations is presented in Section 2. In
Section 3, asymptotic behavior results of nth order impulsive
differential equations are derived. A numerical example is
given to demonstrate our results in Section 4 and Section 5
concludes the paper.

2. Model Description and Preliminaries

Consider the following nth order impulsive differential
equations x(n)(t) + p(t)x(t) = 0, t ≥ 0, t 6= tk,

x(i)(t+k ) = Iik(x(i)(tk)),
i = 0, 1, · · · , n− 1, k = 1, 2, · · · ,

(1)

where tk, k = 1, 2, · · · are impulsive moments satisfying
0 = t0 < t1 < · · · < tk < tk+1 < · · · , lim

k→+∞
tk = +∞,
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x(i)(t+k ) = lim
h→0+

x(i−1)(tk + h)− x(i−1)(t+k )

h
, x(i)(tk) =

lim
h→0−

x(i−1)(tk + h)− x(i−1)(tk)

h
, p(t) is continuous and

differentiable function on [0,+∞), Iik(·) are continuous in R
and there exist positive numbers dk such that |Iik(x)| ≤ dk|x|.

By a solution x = x(t), we mean a real function on [0,+∞)
satisfies that x(n)(t) + p(t)x(t) = 0 at each point t ∈ [0,+∞)
with the possible exception of the points t 6= tk and x(i)(t+k ) =
Iik(x(i)(tk)) for any tk.

Lemma 1. ([9]) Assume that l(t) is a continuous function
on [0,+∞). If there exist positive numbers vk, k = 1, 2, · · ·
and constants γ > 0, b > 0, c such that for tk+1 − tk ≤ γ,

ln vk +
∫ tk+1

tk
l(s)ds ≤ −b and

ln vk +

∫ tk+ξ

tk

l(s)ds ≤ c,∀ξ ∈ [0, γ] (2)

then

lnh(t) ≤ − b
γ
t+ max{b+ c, 0}, t > 0, (3)

where h(t) =
∏

0≤tk<t
vk exp(

∫ t
0
l(s)ds).

Lemma 2. ([9]) Assume that l(t) is a continuous function
on [0,+∞). If there exist positive numbers vk, k = 0, 1, · · ·
and i ∈ {1, 2, · · · } and ω > 0, c > 0 such that for tk+i =
tk + ω, vk+i = vk, l(t+ ω) = l(t) and

ln(
∏

t≤tk<t+ω

vk) +

∫ t+ω

t

l(s)ds ≤ −b,∀t ≥ 0, (4)

then

lnh(t) ≤ − b
ω t+ b+ max

t∈[0,ω]
{| ln(

∏
0≤tk<t

vk)|}+ ω max
t∈[0,ω]

{|l(t)|}, t > 0, (5)

where h(t) =
∏

0≤tk<t
vk exp(

∫ t
0
l(s)ds).

3. Asymptotic Behavior Analysis
In this section, some criteria on asymptotic behavior results

of (1) are established under Lyapunov functions and impulsive
technique.

Theorem 1. If there exists M > 0 such that αn ≤ M ,
n = 1, 2, · · · , then every solution x(t) of (1) is bounded, where

αn = d2
1 · · · · · d2

n−1 exp(

∫ tn

0

p̃(s)ds), p̃(s) = max{2, 1 +

p2(s)}.
Proof. For every solution x(t) of (1), we construct a

Lyapunov function

V (t) =

n−1∑
i=0

[x(i)(t)]2 (6)

In view of system (1), we have

V
′
(t) = 2

n−1∑
i=0

[x(i)(t)x(i+1)(t)] = 2x(n−1)(t)[−p(t)x(t)] + 2

n−2∑
i=0

[x(i)(t)x(i+1)(t)]

≤
n−1∑
i=0

{[x(i)(t)]2 + [x(i+1)(t)]2}+ p2(t)[x(n−1)(t)]2 + x2(t)

=

n−2∑
i=0

2[x(i)(t)]2 + [1 + p2(t)][x(n−1)(t)]2 ≤ p̃(t)V (t).

(7)

When t = tk, we have

V (t+k ) =

n−1∑
i=0

[x(i)(t+k )]2 =

n−1∑
i=0

[Iik(x(i)(tk))]2

≤
n−1∑
i=0

d2
k[x(i)(tk)]2 = d2

kV (tk).

(8)

For t ∈ [0, t1], by (7), it yields that

V (t) ≤ V (0) exp(

∫ t

0

p̃(s)ds). (9)

Thus

V (t1) ≤ V (0) exp(

∫ t1

0

p̃(s)ds). (10)

For t ∈ [t1, t2], we have

V (t) ≤ V (t+1 ) exp(

∫ t

t1

p̃(s)ds)

≤ d2
1V (t1) exp(

∫ t
t1
p̃(s)ds)

≤ V (0)d2
1 exp(

∫ t1

0

p̃(s)ds+

∫ t

t1

p̃(s)ds)

= V (0)d2
1 exp(

∫ t

0

p̃(s)ds).

(11)
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By induction, for t ∈ [tn−1, tn], we conclude that

V (t) ≤ V (0)d2
1 · · · · · d2

n−1 exp(

∫ t

0

p̃(s)ds)

≤ V (0)d2
1 · · · · · d2

n−1 exp(
∫ tn

0
p̃(s)ds)

= V (0)αn.

(12)

Since sequence |αn| ≤ M , we can conclude that every
solution x(t) of (1) is bounded.

Theorem 2. If lim
n→∞

αn = 0, then every solution x(t)

of (1) satisfies lim
t→∞

x(t) = 0, where αn = d2
1 · · · · ·

d2
n−1 exp(

∫ tn

0

p̃(s)ds), p̃(s) = max{2, 1 + p2(s)}.

Theorem 3. If there exist a > 0, M > 0 such that p(t) ≥ a
and βn ≤ M , n = 1, 2, · · · , then every solution x(t) of (1)

is bounded, where βn = d2
1 · · · · · d2

n−1 exp(

∫ tn

0

p̄(s)ds),

p̄(s) = max{2, 2p(s) +
p
′
(s)

p(s)
}.

Proof. For every solution x(t) of (1), we construct a
Lyapunov function

V (t) = p(t)x2(t) +

n−1∑
i=1

[x(i)(t)]2 (13)

In view of system (1), we have

V
′
(t) = p

′
(t)x2(t) + 2p(t)x

′
(t)x(t) + 2

n−1∑
i=1

[x(i)(t)x(i+1)(t)]

= p
′
(t)x2(t) + 2p(t)x

′
(t)x(t) + 2

n−2∑
i=1

[x(i)(t)x(i+1)(t)] + 2x(n−1)(t)[−p(t)x(t)]

≤ p′(t)x2(t) + p2(t)(t)x2(t) + [x
′
(t)]2 +

n−2∑
i=0

{[x(i)(t)]2 + [x(i+1)(t)]2}+ [x(n−1)]2 + p2(t)x2(t)

= [2p2(t) + p
′
(t)]x2(t) + 2

n−1∑
i=1

[x(i)(t)]2

= (2p(t) + p
′
(t)

p(t) )p(t)x2(t) + 2

n−1∑
i=1

[x(i)(t)]2

≤ p̄(t)V (t).

(14)

According to the proof of Theorem 1, we can conclude that
every solution x(t) of (1) is bounded.

Theorem 4. If there exists a > 0 such that p(t) ≥ a
and lim

n→∞
βn = 0, then every solution x(t) of (1) satisfies

lim
t→∞

x(t) = 0, where βn = d2
1 · · · · · d2

n−1 exp(

∫ tn

0

p̄(s)ds),

p̄(s) = max{2, 2p(s) +
p
′
(s)

p(s)
}.

Theorem 5. If there exist c1 > 0, c2 ≥ 0 such that
lnh1(t) ≤ −c1t + c2, then every solution x(t) of (1)
is globally uniformly exponentially stable, where h1(t) =∏
0≤tk<t

d2
k exp(

∫ t

0

p̃(s)ds), p̃(s) = max{2, 1 + p2(s)}.

Proof. For every solution x(t) of (1), we construct a Lyapunov
function

V (t) =

n−1∑
i=0

[x(i)(t)]2 (15)

Based on the proof of Theorem 1, for t ∈ [tn−1, tn], we
have

V (t) ≤ V (0)d2
1 · · · · · d2

n−1 exp(

∫ t

0

p̃(s)ds)

= V (0)
∏

0≤tk<t
d2
k exp(

∫ t
0
p̃(s)ds)

= V (0)h1(t) ≤ V (0)ec2e−c1t,

(16)

which implies that every solution x(t) of (1) is globally
uniformly exponentially stable.

Theorem 6. If there exist a > 0, c3 > 0, c4 ≥ 0 such that
p(t) ≥ a and lnh2(t) ≤ −c3t+c4, then every solution x(t) of
(1) is globally uniformly exponentially stable, where h2(t) =∏
0≤tk<t

d2
k exp(

∫ t

0

p̄(s)ds), p̄(s) = max{2, 2p(s) +
p
′
(s)

p(s)
}.

By using Lemma 1 and Lemma 2, together with Theorem
5 and Theorem 6, we can obtain the following practical
theorems.

Theorem 7. If there exist γ̄1 > 0, b̄1 > 0, c̄1 such that for

k = 1, 2, · · · , tk+1 − tk ≤ γ̄1, ln d2
k +

∫ tk+1

tk

p̃(s)ds ≤ −b̄1
and

ln dk +

∫ tk+ξ̄1

tk

p̃(s)ds ≤ c̄1,∀ξ̄1 ∈ [0, γ̄1] (17)

then every solution x(t) of (1) is globally uniformly
exponentially stable, where
p̃(s) = max{2, 1 + p2(s)}.
Theorem 8. If there exist a > 0, γ̄2 > 0, b̄2 > 0, c̄2 such that

for p(t) ≥ a, tk+1 − tk ≤ γ̄2, ln d2
k +

∫ tk+1

tk

p̄(s)ds ≤ −b̄2
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and

ln d2
k +

∫ tk+ξ̄2

tk

p̄(s)ds ≤ c̄2,∀ξ̄2 ∈ [0, γ̄2], (18)

then every solution x(t) of (1) is globally uniformly
exponentially stable, where

p̄(s) = max{2, 2p(s) +
p
′
(s)

p(s)
}.

Theorem 9. If there exist i ∈ {1, 2, · · · } and ω > 0, b̃1 > 0
such that tk+i = tk + ω, dk+i = dk, p̃(t+ ω) = p̃(t) and

ln(
∏

t≤tk<t+ω

d2
k) +

∫ t+ω

t

p̃(s)ds ≤ −b̃1,∀t ≥ 0, (19)

then every solution x(t) of (1) is globally uniformly
exponentially stable, where
p̃(t) = max{2, 1 + p2(t)}.

Theorem 10. If there exist i ∈ {1, 2, · · · } and a > 0

ω > 0, b̃2 > 0 such that p(t) ≥ a tk+i = tk + ω, dk+i = dk,
p̄(t+ ω) = p̄(t) and

ln(
∏

t≤tk<t+ω

d2
k) +

∫ t+ω

t

p̄(s)ds ≤ −b̃2,∀t ≥ 0, (20)

then every solution x(t) of (1) is globally uniformly
exponentially stable, where

p̄(s) = max{2, 2p(s) +
p
′
(s)

p(s)
}.

4. Numerical Simulations

This section presents an example to demonstrate theoretical
results for asymptotic behavior of nth order impulsive
differential equations.

Example 1. Consider the following second order impulsive
differential equations:

{
x
′′
(t) + p(t)x(t) = 0, t ≥ 0, t 6= tk,

x(t+k ) = dkx(tk)), x
′
(t+k ) = dkx

′
(tk)), k = 1, 2, · · · ,

(21)

where p(t) is periodic function with periodic ω = 2, and

p(t) =

{
0, t ∈ [0, 0.5),
2, t ∈ [0.5, 1],

the impulsive effects with periodic 1 are defined by
tk+2 = tk + 1, t1 = 0.2, d2k = 0.2, d2k+1 = 1.25, k = 0, 1, · · · . By computation, we have

p̃(t) =

{
2, t ∈ [0, 0.5),
5, t ∈ [0.5, 1]

and

ln(
∏

t≤tk<t+2

d2
k) +

∫ t+2

t

p̃(s)ds < 0,∀t ≥ 0. (22)

It follows from Theorem 9 that every solution x(t) of (1) is globally uniformly exponentially stable. Figure 1 depicts impulsive
sequence with period 1. Figure 2 depicts state trajectory x(t) of system (21).

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

0

0.5

1

1.5

Figure 1. Impulsive sequence with periodic 1.
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Figure 2. The state trajectory x(t) of (21).

5. Conclusions
In this paper, asymptotic behavior of n order impulsive

differential equations has been studied. By method of
impulsive technique and Lyapunov function, some new
behavior criteria have been derived. Finally, a standard
example package illustrate that the new results are practical.
Our future work will focus on the neural networks with
impulse and consensus of multi-agent systems with impulse.
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