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Abstract: In survey sampling, the main objective is to make inference about the entire population parameters using the 

sample statistics. In this study, a nonparametric estimator of finite population total is proposed and the coverage probabilities 

using the Edgeworth expansion explored. Three properties; unbiasedness, efficiency and the confidence interval of the 

proposed estimator are studied. There is a lot of literature on study of two properties; unbiasedness and efficiency of the finite 

population total. This study therefore has more focus on confidence interval and coverage probability. The amount of bias and 

MSE are studied partially analytically, followed by an empirical study on the two properties and the confidence interval of the 

proposed estimator. Based on the empirical study with simulations in R, the proposed estimator resulted into smaller bias and 

MSE compared to the nonparametric estimator due to [6], the design-based Horvitz-Thompson estimator and the model-based 

ratio estimator. Further, the proposed estimator is tighter compared to the other three considered in this study and has higher 

converging coverage probabilities. 
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1. Introduction 

In estimating a population parameter such as a mean or a 

variance, a measure of precision of the estimate is quite 

paramount. The most commonly reported measure of 

precision is the function of the variance (or its square root; 

the standard error). The variance of the estimator is always 

estimated since the measure of precision of the estimator is 

the inverse of its variance [9]. In the estimation of the finite 

population total, misspecification of the model can lead to 

serious errors in an inference especially with regard to the 

non-sampled part of the population. In the recent past, efforts 

have been made to explore alternative ways to attenuate the 

errors. These include the use of nonparametric regression in 

evolving robust estimators in finite population sampling [11]. 

Nonparametric estimators have been found to be robust 

and more precise than their parametric counterparts. It is 

known, for instance, that a linear regression estimate will 

produce a large error for every sample size if the true 

underlying regression function is not linear and cannot be 

well approximated by linear functions [12]. 

The non-parametric regression estimator of a finite 

population total is a potent rival to familiar design-based 

estimators. It has the quality of automaticity associated with 

design-based estimators, but can better reflect the actual 

structure of the data, yielding greater efficiency [7]. It can be 

costly in computer power, and will probably not do as well as 

a parametric-model based estimator, when the modelling 

process is done carefully. Further research on how 

satisfactory the consequent confidence intervals of the 

estimator could be [6]. 

1.1. Statement of the Problem 

As long as populations are large, detail is expensive [4]. In 

most studies the sample information is to estimate the 

population characteristics. The choosing of models could 
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lead to misspecification especially with regard to using of the 

auxiliary information of the non-sampled part of the 

population. A finite population total estimator that gives 

shorter confidence interval and higher coverage probabilities 

with possibilities of errors’ correction due to skewness and 

kurtosis remains unexplored. 

1.2. Objectives of the Study 

1. To propose a nonparametric estimator for a finite 

population total based on Edgeworth expansion. 

2. To study the asymptotic properties of the proposed 

finite population total estimator. 

3. To estimate the coverage probabilities for the proposed 

finite population total estimator. 

2. Literature Review 

2.1. Review of Nonparametric Estimation 

Nonparametric regression has its origin in exploration of 

data. Let � = {�� , �� }, � = 1, 2, … , �  be a data set, then a 

cloud of points is suggested. It may basically mean drawing a 

line in the � − � plane through the cloud of points showing 

the essential characteristics of the nature of relationship 

between the variables Y and X. In survey sampling, there are 

four estimation approaches that can be used in statistical 

investigations; the design-based approach, model-based 

approach, model-assisted approach and randomization-

assisted approach [4]. 

The model-based approach has bridged the gap between 

finite population problems and the rest of statistics. Before 

the model-based approach, finite population sampling was an 

eccentric realm where many of the basic concepts and tools 

of statistics were curiously inapplicable. Statisticians skilled 

in designing experiments and in applying linear models to 

make inferences from experimental and observational data 

found that finite population problems were apparently 

beyond the scope of their techniques [5]. 

Although there were some familiar-looking formulas, such 

as the linear regression estimator; these statistics lacked the 

familiar rationale and properties. Not only was the linear 

regression estimator biased and therefore certainly not a Best 

Linear Unbiased Estimator (BLUE), it was not even linear, 

because the random choice of observation points turned the 

denominator of the estimated slope into a random variable. 

In the model-based approach, the distribution is a structure 

that is defined by the population itself and is unknown but 

can be modelled. In this prediction approach, the 

expectations are over all possible realizations of a linear 

regression stochastic model linking a variable of interest Y 

with a set of auxiliary variables, X [1]. The values of the 

variable Y are believed to be random variables; ��, ��, … , �� 	 generated by some model. The actual 

observations for the finite population ��, ��, … , ��  are one 

realization of the random variables. The presence of the 

auxiliary information associates units in the sample and those 

not in the sample. 

The information obtained from the sample is used to 

predict the information of the non-sampled observations. In 

thus study, it is assumed that Y is function of X, hence a 

model of the form 

�� = ����� + �� 	                              (1) 

is used. It is further assumed that �� are the error terms which 

are normally identically and independently distributed with ����� = 0	and ������ = �� 

An appropriate model-based estimator of the finite 

population total is of the form 

�� = ∑ �� +��∈ ∑ �!��∉ ����		                     (2) 

Where �!���� = ∑ #�������  [15]. 

A related nonparametric model-assisted regression 

estimator considered by replacing local polynomial 

smoothing with penalized splines. It was extended the local 

polynomial nonparametric regression estimation to two-stage 

sampling. In their work, simulation results indicate that the 

nonparametric estimator dominates standard parametric 

estimators when the model regression function is incorrectly 

specified, while being nearly as efficient when the parametric 

specification is correct [3]. 

The application of nonparametric regression was also 

considered to the estimation of finite population error 

variance for a given sample drawn from the population [11]. 

The error variance obtained was a function of $�%�&' that are 

unknown. By considering the squared residual 

�&� = (�� −�!%�&')� 

and using some mild assumptions, the study showed that �%�&�/�& = �&' = $�%�&' + Ο��+��  implying that �&�  is an 

asymptotic unbiased estimator of $�%�&'. They obtained an 

improved estimator of $�%�&' by smoothing �&� for ,-. being 

sample points %�& , �&'′ close to ��′� , �� ′� [6]. 

2.2. Local Polynomial Regression 

The local polynomial regression was also considered in the 

estimation of finite population totals. In this research, the 

equation �� = ����� + $������  was considered and the 

technique of using a strip of data around the co-variate 

applied in order to fit a line through the set of data %�& , �&'. 

The estimator yielded better results in estimating the finite 

population total. Further, the estimator was found to be 

asymptotically unbiased, consistent and normally distributed 

when certain conditions were satisfied [12]. 

2.3. Use of Jackknife and Bootstraps in Estimation 

The Jackknife and bootstrap estimation procedures include 

trap methodologies. The Jackknife for example can be used 

in many situations since its bias is asymptotically smaller 

than the bias of any given biased estimator. However, the 

method is inappropriate for correlated data or time series 

data. The method assumes independence between the random 

variables (and identically distributed data points), and if that 

assumption is violated, the results will be of no use. Another 
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important condition to note is that the Jackknife estimate is 

composed of a linear function (subtraction) and hence will 

only work properly for linear functions of the data and/or 

parameters, or on functions that are smooth enough to be 

modelled as continuous without much of a problem [8]. 

The bootstrap does not show the skewness, hence unable 

to correct errors there from. The bootstrap method is also 

computation intensive and produces confidence intervals 

with smaller rate of coverage [13]. 

3. The Proposed Estimator 

3.1. Review of the Edgeworth Expansion 

Let ��, ��, … , �0  be independent and identically 

distributed (iid) random variables with mean µ and variance 

σ
1. Define 

�0 = 2
√4∑ ��0�5� 		                           (3) 

Then the characteristics function of �0 is given by 

6 4�7� = � 8��9 :( ;<
√4)∑ ��0�5� => = 86? ( <

√4)>0	     (4) 

Using the Taylor’s series expansion, (4) becomes 

@6?% <
√4'A0 = � :1 + ;<B

√4C�;<�DBDD4 C ��E�F?F
G0√0 + ��E�H?H

�I0D = + J��+��	 (5) 

Setting ���I� = K to take care of kurtosis and ���L� = M 

to take care of skewness, (5) simplifies to 

86? ( <
√4)>0 = 8%1 − <DD4'0 + %1 − <DD4'0+� (��E�FNG√0 + ��E�HO

�I0 ) +
%1 − <DD4'0+� �0+����E�PND

Q�0D > + J%24'	 (6) 

Using binomial expansion and from (4) and (6), 

6 4�7� = �+2D<D 81 + �;<�FRP√4 C ��E�H�O+L�
�I0 + ��E�PND

Q�0D > + J%24'	  (7) 

By defining inversion of a function and incorporating the 

characteristic function, a function S��� results, 

S��� = Φ��� + U��� (R%VDW2'P√4 C �O+L��XF+L�
�I0 + ND�XY+�ZXF+�[X�

Q�0D )  (8) 

where Φ���  is a standard normal distribution, U���	 is a 

normal distribution and 

(R%VDW2'P√4 C �O+L�%XF+L'
�I0 + ND%XY+�ZXF+�[X'

Q�0D )  is the Edgeworth 

expansion. 

3.2. The Proposed Estimator 

Let T be the population total, defined as the sum of the 

values of all the population measurements and let the random 

variable Y be the variable of interest and that X is an auxiliary 

variable associated with � assumed to be known for all the 

observable population units such that � = ∑ ����5� . 

All the sampled units are observed and the task therefore is 

to estimate the non-sampled part of the population. The non-

sampled part is estimated using the Edgeworth Expansion. 

Let S be the sample from the population of N units, then � = ∑ �� +��\] ∑ ����∉] . For the sum ∑ ����∉] , consider the model �� = ����� + ��  where m is an unknown smooth function 

that depends on the sample data and is estimated by �!��� for 

the non sampled data points. 

The nonparametric estimator of the finite population total 

is proposed, 

��0^_ = ∑ �� +�\] ∑ �!_�����∉] 		                   (9) 

where, 

�_���� = Φ��� + U��� (R%VDW2'P√4 C �O+L�%XF+L'
�I0 + ND%XY+�ZXF+�[X'

Q�0D )		 (10) 

Taking expectation on both sides of [10] gives: 

�!_���� = ∑ (R%VDW2'P√4 C �O+L��XF+L�
�I0 + ND�XY+�ZXF+�[X�

Q�0D )���∈ 		  (11) 

such that to test for the asymptotic normality behaviour, the 

estimator is considered as the sample size increases. 

4. Empirical Study 

4.1. Simulation of Data 

Population of size 1,500 was simulated from three data 

variables; linear, quadratic and exponential. 

The linear function is based on the linear model which has 

the relation 

�� = 1 + 2��� − 0.5� + ��                    (12) 

The second study variable or mean function was obtained 

using the quadratic function which has the relation 

�� = 1 + 2��� − 0.5�� + �� 	                   (13) 

The third study variable was obtained from an exponential 

function which is given by 

�� = ��9�−8��� + �� 	                       (14) 

The auxiliary variable ��  was assumed to be uniformly 

distributed and in the interval [0, 1]. The error term �� is a 

standard normal variable defined as ��~d�0,1�. 
A simple random sample of size 300 was selected randomly 

from the simulated population index-wise, and replicated 1500 

times giving rise to 1500 simple random samples. The 

proposed estimator was therefore compared to the 

nonparametric regression estimator due to [6], the design-

based Horvitz-Thompson estimator and the Ratio estimator 

using the amount of bias, MSE and the coverage probabilities. 

4.2. Unconditional Properties 

4.2.1. Relative Bias of the Estimator 

The relative bias of the estimator was obtained using 

e∑ fgh2Yii;j22Yii 	Wfk
f

 where T is the actual population total and ��� is the 

estimator of the population total from the �El  sample, for � = 1,2, … ,1500. 
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Table 1. Relative Biases of the Estimators. 

Model (Function) mnopq mnop mnr mnsm 

Linear 21.402 50.254 20.118 -25.085 

Quadratic -10.420 -79.562 52.101 25.451 

Exponential -17.352 52.017 61.219 -23.518 

From Table 1, some of the values of the average relative 

biases are either negative or positive which shows either 

underestimation or overestimation respectively. For the linear 

function, the ratio estimator has the lowest bias, followed by 

the proposed estimator showing that the model-based ratio 

estimator is the best. This is because the ratio estimator is the 

Best Linear Unbiased Estimator (BLUE). For the quadratic 

function, the proposed estimator outperforms all the other 

three estimators and the same applies to the exponential 

function. It is also observed from the simulated data 

particularly from quadratic and exponential functions, that 

most of the estimates obtained using the estimator Dorfman 

and those of the ratio estimator had slightly larger biases in 

most of the data models. 

4.2.2. Mean Squared Error (MSE) of the Estimator 

The measures for the MSEs were computed for the three 

data sets,	 t�� = ∑ �fghWf�D2Yii;j22Yii 	  and then compared. The 

summary of the results are as tabulated in Table 2. 

Table 2. Relative MSE of the Estimators. 

Model (Function) mnopq mnop mnr mnsm 

Linear 0.012321 0.018007 0.010467 0.096534 

Quadratic 0.016435 0.021452 0.094651 0.030814 

Exponential 0.040100 0.046764 0.090438 0.084677 

From Table 2, for the linear mean function, the ratio 

estimator performed the best followed by the proposed 

estimator. This is because the ratio estimator is the Best 

Linear Unbiased Estimator (BLUE). For the quadratic 

function, the proposed estimator performed the best with the 

ratio estimator having the largest value, attributable to the 

fact that the ratio estimator though BLUE is unstable for 

other distribution functions. For the exponential function, the 

designed-based Horvitz-Thompson estimator and the model-

based ratio estimators have larger values showing that the 

proposed nonparametric regression estimator of the finite 

population total is the best of the four followed by the 

nonparametric regression estimator by [6]. 

4.2.3. The 95% Confidence Interval Length 

The uncertainty in using point estimate is addressed by 

means of confidence intervals. Confidence intervals provide 

us with a range of values for the unknown population along 

with the precision of the method. 

The standard error necessitates the construction of the 

confidence interval. These give the probability to which the 

range of estimator covers the estimator of the parameter. A 

95% confidence interval was therefore constructed such that [�� − vwD�. �%��', �� + vwD�. �%��'] [10] 

For the extent of coverage of the estimator, the coverage 

probability was explored more explicitly by approximating 

y z {�+{
|}~��{�� ≤ 0.95� = Φ��� + � (�0) [11] 

Where Φ��� is the distribution of the estimator which is 

clearly a function of the variable characteristics and follows 

the standard normal distribution and O is an order function of 

the sample size n which is of order �+� 

The empirical results were tabulated in Table 3. 

Table 3. 95% Confidence interval length of the estimators. 

Model (Function) mnopq mnop mnr mnsm 

Linear 12.953 95.230 11.347 201.297 

Quadratic 14.498 19.543 637.369 27.893 

Exponential 36.002 150.119 85.2050 320.113 

In Table 3, for the linear function, the ratio estimator being 

BLUE has the shortest confidence interval followed by the 

proposed estimator. the proposed nonparametric regression 

estimator of the finite population total has the shortest 

confidence interval length for the quadratic and exponential 

functions, showing that the proposed estimator outperforms 

the design-based Horvitz-Thompson and the Dorfman’s 

nonparametric estimators. 

4.2.4. Coverage Probabilities of the Estimator 

The coverage probabilities of the proposed estimator were 

computed using the nominal probabilities; 0.01, 0.05 and 

0.10 for the 99%, 95% and 90% confidence levels 

respectively. 

Table 4. Coverage Probabilities of the estimators. 

Estimator 

Linear Function Quadratic Function Exponential Function 

Nominal 

probability 

Coverage 

probability 

Nominal 

probability 

Coverage 

probability 

Nominal 

probability 

Coverage 

probability 

Tn��� 0.01 0.9801 0.01 0.9900 0.01 0.9901 

0.05 0.9360 0.05 0.9455 0.05 0.9460 

0.10 0.8850 0.10 0.8990 0.10 0.8990 

Tn�� 0.01 0.9800 0.01 0.9821 0.01 0.9807 

0.05 0.9352 0.05 0.9299 0.05 0.9398 

0.10 0.9023 0.10 0.8927 0.10 0.8945 

Tn� 0.01 0.9900 0.01 0.9899 0.01 0.9845 

0.05 0.9482 0.05 0.9429 0.05 0.9367 

0.10 0.8952 0.10 0.8923 0.10 0.8834 

Tn�� 0.01 0.8590 0.01 0.9782 0.01 0.9289 

0.05 0.9349 0.05 0.9361 0.05 0.9287 

0.10 0.8745 0.10 0.8897 0.10 0.8839 
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From Table 4, apart from the linear function, the proposed 

estimator has the highest conditional coverage probabilities 

for all the functions used in the study. 

4.3. Conditional Properties 

4.3.1. Conditional Biases 

Since the estimation is model-based, the 1,500 simple 

random samples were grouped into groups of 50 so that there 

were 30 groups. For each group �̿ = �
LZ∑ �̅�[Z�5� 	was computed 

and ��0^_ = �
LZ∑ ��0^_.�[Z�5� 	was also computed. The conditional 

bias for each group was computed as ��0^_ − ��	where ��	is the 

population mean for the survey measurements and	�̅� 	is the 

sample mean for the auxiliary variables. 

The figures 1, 2 and 3 below illustrate the behavior of the 

conditional bias for each estimator when the three mean 

functions were used. The figure 1 shows the conditional bias 

when linear mean functions was used, figure 2 shows the 

conditional bias when a quadratic mean function was used 

and figure 3 shows the conditional bias when an exponential 

mean function was used. 

 

Figure 1. Conditional biases for the Linear Function. 

From figure 1, the ratio estimator performed well when a 

linear mean function was used. This is attributed to the fact 

that the ratio estimator is the Best Linear Unbiased Estimator 

(BLUE). It can be observed that the biases to the left of the 

population mean of the auxiliary variable are large but 

gradually reduce towards the right. 

 

Figure 2. Conditional biases for Quadratic Function. 

From figure 2, the quadratic mean function was used, the 

proposed estimator gives better estimates of the population 

total compared to those realized using the estimator proposed 

by [6], the ratio estimator and the design-based Horvitz-

Thompson estimator. It can be observed that biases to the left 

of the population mean of the auxiliary variable, are large but 

gradually reduce towards the right. 

 
Figure 3. Conditional Biases for Exponential Function. 

From figure 3, the exponential mean function was used, 

the proposed estimator gives better estimates of the 

population total compared to those realized using the 

estimator proposed by [6], the ratio estimator and the design-

based Horvitz-Thompson estimator. Just like in the functions 

in Figures 1 and 2, it can be observed that biases to the left of 

the population mean of the auxiliary variable, are large but 

reduce gradually almost symmetrically towards the right. 

4.3.2. Conditional MSEs 

Just like the biases, conditional MSEs were determined in 

order to establish the robustness of the proposed estimator 

compared to the designed based, the ratio and the non-

parametric Dorfman (Nadaraya-Watson) estimators. 

 

Figure 4. Conditional MSEs for the Linear Function. 

From Figure 4, the ratio estimator has the lowest MSE 

compared to all the other estimators, this is attributed to 

the fact that the ratio estimator is BLUE. Apart from the 

fact that, the non-parametric estimator proposed by 

Dorfman has a minimum MSE at around 0.49 mean of the 

means, the proposed estimator is the second-best estimator 
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based on the MSE. 

 

(a) 

 

(b) 

Figure 5. Conditional MSEs for Quadratic and Exponential Functions. 

From Figure 5, the proposed estimator has outperformed 

the design-based Horvitz-Thompson, model-based ratio and 

the Dorman’s non-parametric Estimators for both functions; 

quadratic and exponential. 

4.3.3. Conditional Confidence Interval Lengths 

The confidence intervals and coverage probabilities were 

the main asymptotic properties of the proposed estimator. 

Given the proposed estimator is model-based, the conditional 

confidence interval lengths were also explored as in Figures 

6 and 7. 

 

(a) 

 

(b) 

Figure 6. Conditional Confidence Interval Lengths for Linear and 

Quadratic Functions. 

From Figure 6 (a) and (b), the proposed estimator has the 

shortest confidence interval length except in the linear 

function where the ratio estimator has the shortest confidence 

interval length. Averagely therefore, the proposed estimator 

has the shortest confidence interval length. 

 

Figure 7. Confidence Interval Length for the Exponential Function. 

From Figure 7, the proposed estimator using Edgeworth 

expansion has the shortest confidence interval length, 

followed by the ratio estimator with the design-based Horvitz 

Thompson parametric estimator having the longest 

confidence interval Length. From both the unconditional and 

conditional confidence interval lengths, the proposed 

estimator is robust. 

4.3.4. Conditional Coverage Properties 

Based on the conditional confidence intervals, the 

coverage probabilities were computed for the 30 samples. 

The coverage probability was based on the number of 

observations falling within the confidence interval 

compared to the total number of observations. The 

coverage properties of the estimators are captured in 

Figures 8 – 10. 
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Figure 8. Conditional coverage probabilities for the Linear function. 

 

Figure 9. Conditional coverage probabilities for the Quadratic function. 

 

Figure 10. Conditional coverage probabilities for the Exponential function. 

From Figures 8, 9 and 10, the proposed estimator 

outperformed all the other estimators except in the linear 

function. The ratio estimator which is quite unstable for the 

quadratic function performed the best in the linear function 

which could be attributed to the fact that it is BLUE. 

5. Conclusion 

A nonparametric estimator of the finite population total 

based on Edgeworth expansion is proposed. The proposed 

estimator comparatively gave a smaller bias and MSE and a 

confidence interval that was shorter and tighter compared to 

the other estimators (the design-based Horvitz-Thompson, 

model-based ratio and the nonparametric regression estimator 

due to [6] considered in the study. 

The application of Edgeworth expansion in computing 

coverage probabilities performed better than the traditional 

way of using the central limit theorem and is therefore be 

recommended for error correction as a result of skewness and 

kurtosis. 
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