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Abstract: Our aim in this study is to give the Gagliardo-Nirenberg Inequality as a consequence of pointwise estimates for 

the function in terms of the Riesz potential of the gradient. Our aim here is to discuss boundedness of Reisz potential in term of 

maximal functions and to give the proof for Gagliardo-Nirenberg Inequality in term of Reisz potential. We will extend our 

result to discuss weak type estimate for Gagliaro-Nirenberg Sobolev inequality. Further, in this paper we are interested to 

extract Sobolev type inequality in terms of Riesz potentials for α is equal to one and to extend our work for weak type 

estimates when p is equal to one. 
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1. Introduction 

The Hardy-Littlewood maximal function was considered 

as a classical tool in various areas such as potential analysis 

and harmonic analysis from years and later in Sobolev space 

theory and partial differential equations see [1, 4, 12], and 

[13]. Sobolev space plays a significant role in dealing with 

existence and regularity of solutions of Partial Differential 

Equations see [5, 8]. The Hardy-Littlewood maximal 

function bridging between functional analysis, sobolev 

spaces and partial differential equations [7, 9, 11, 17]. 

Boundedness of Maximal function has been discussed earlier 

with different arguments such as, Boundedness and regularity 

of maximal functions on hardy-sobolev spaces discussed in 

[15]. Luiro generalized the original boundedness result and 

established the continuity of the centered maximal operator 

in ��,����� , 1 
 � 
 ∞  [13]. P. Hajlasz and J. Onninen 

proved the boundedness of the spherical maximal function in 

the Sobolev space ��,��Ω�, p � �
��� . For other arguments 

and related results, one can see [10, 16] and [18]. With the 

strong arguments over the boundedness of Hardy-Lilltewood 

Maximal function, our aim here is to discuss boundedness of 

Reisz potential in term of maximal functions and to give the 

proof for Gagliardo-Nirenberg Inequality in term of Reisz 

potential. We will extend our result to discuss weak type 

estimate for Gagliaro-Nirenberg sobolev inequality. 

We start by recalling the definition of maximal function. 

Let ���, �� � �� ∈ ��: |� � �| 
 ��  is an open ball 

having center at � ∈ �� and radius � � 0 then  ��:�� →  0,∞!	#$%&%	� ∈ '()*� ����	is  

����� � sup-./ �
|0�1,-�| 2 |����|3�.

0�1,-� 	          (1) 

As from Lebesgue differentiation theorem, for all � ∈ �� 

|����| � lim-./
1

|���, ��|8 |����|3�
0�1,-�

	 

9 sup-./
1

|���, ��| 8 |����|3�
0�1,-�

� ����� 

As maximal function approach involves in our theme of 

work, we will begin with some basic and obvious results. 

Lemma 1: If � ∈ ':���� , then �� ∈ ':����  and ‖��‖<=�>?� 9 ‖�‖<=@>?A. 
Proof: For any � � 0 and for all � ∈ �� we can write 
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1|���, ��|8 |����|3�.
0�1,-� ≤ 1|���, ��| ‖�‖<=@>?A|���, ��| 

= ‖�‖<=@>?A 
sup-./ 	 1|���, ��|8 |����|3�0�1,-� ≤ ‖�‖<=@>?A 

Using (1.1), we have ����� ≤ ‖�‖<=@>?A 
Thus ‖��‖<=�>?� ≤ ‖�‖<=@>?A 
It shows the maximal function will essentially bounded 

with the boundedness of original function and thus finite 

everywhere. See [9] 

Hardy-Littlewood-Wiener theorem states that: 

If � ∈ '�����, there exist B = B�3� such that 

|�� ∈ ��: ����� > C�| ≤ *D ‖�‖<E@>?A for every C > 0   (2) 

This result indicates that �� maps from '����� to weak '����� and � ∈ '����� does not claim about �� ∈ '����� 

and thus Hardy-Littlewood maximal operator is not bounded 

in '�����. In this case we can get only weak type estimates. 

Hajłasz and Onninen raised same type of question in [15]. 

Later on Tanaka [6] gave its answer positively for 3 = 1. 
If � ∈ '�����, 1 < � ≤ ∞, so is �� ∈ '����� 

then there exist B = B�3, �� such that  

‖��‖<F�>?� ≤ B‖�‖<F@>?A                        (3) 

This result shows that Hardy-Littlewood operator is 

bounded in '����� for � > 1 

Lemma 2: If G ∈ H/����� , then for every � ∈�� 	�I3	J���, the �3 − 1�-dimensional measure of K��1,0� 

we have G��� = �L?ME ∫>? NO�P�	∙	�1�P�|1�P|? 	3� 

Proof: We will use fundamental theorem of calculus and 

start the case by taking one dimensional case. 

If G ∈ H/���� , then there exists interval [R, S] ⊂ �  and G��� = 0 for all � ∈ �\[R,S] 
We can write with the help of fundamental theorem of 

calculus 

G��� = G�R� + ∫ GW���3� = ∫ GW���3�1�:1(           (4) 

In another way we can write for initial condition G�R� = 0 

as 

0 = G�S� = G��� + ∫ GW���3� = G��� + ∫ GW���3�:1X1 , 

Or 

G��� = −∫ GW���3��:1                        (5) 

From (3) and (4) we have, 2G��� = ∫ GW���3�1�: −∫ GW���3�:1  

=∫ OZ�P��1�P�|1�P| 3�1�: + ∫ OZ�P��1�P�|1�P| 3�:1  

=∫ OZ�P��1�P�|1�P| 3�:�:  

Thus G��� = �[ 	∫> OZ�P��1�P�|1�P| 3� for all � ∈ � 

Now, we will extend the result for	�\, 

If � ∈ �\  and ] ∈ 	K��1,0�,  fundamental theorem of 

calculus help us to write  

G��� = −8 KK^ �G�� + ^]��3^ = 8 _G�� + ^]� ∙ ]3^:
/

:
/  

Fubini theorem implies,  

J���	G��� = 	G���∫`0��,/�13a �]� 

= ∫`0��,/� 8 _G�� + ^]� ∙ ]3^:
/ 3a �]� 

Applying Fubini = −∫ ∫`0��,/�:/ _G�� + ^]� ∙ ] 3a �]�3^ 

Considering � = ^], 	3a �]� = ^��� 3a ���  we have = − ∫ ∫`0��,/�:/ 	_G�� + �� ∙ Pb �b?ME 3a ���3^ 

= −8 ∫`0��,/�
:

/
	_G�� + �� ∙ �|�|� 3a ���3^	 

In terms of polar coordinates, we can express as, 

= ∫>? _G�� + �� 	 ∙ 	�|�|� 3� 

replacing c = � + �, 3� = 3c = ∫>? NO�d�	∙	d�1|d�1|? 3c 

or = ∫>? NO�P�	∙	1�P|1�P|? 3� 

Thus G��� = �L?ME ∫>? NO�P�	∙	�1�P�|1�P|? 	3�               (6) 

This is the representation formula for a compactly 

supported continuously differential function in term of its 

gradient. 

By Cauchy-Schwarz inequality and Lemma 2, we can 

write  

|G���| = e 1J��� ∫>?
_G��� 	 ∙ 	� − �|� − �|� 3�e 

≤ 1J��� ∫>?
|_G���|	|� − �||� − �|� 3� 

≤ 1J��� ∫>?
|_G���|	|� − �|��� 3� 

≤	 �L?ME f��|_G|����                    (7) 

Where f�� denotes the Reisz Potential for g = 1. 

For 0 < g < 3,	Reisz Potential of order g can be deduced 

as  

fh���� = ∫>? i�P�	|1�P|?Mj 3�.                         (8) 
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One who interested in fundamental properties of Riesz 

potentials, see e.g. [12]. 

In case of compactly supported smooth functions, the above 

result is useful for pointwise bound of functions in term of 

Reisz potential of the gradient. Some authors have obtained 

some results for Reisz protentional for example Armin 

Schikorra and Daniel Spectory [2] established new '� -type 

estimate for Riesz potential. In [3], Petteri Harjulehto, Ritva 

Hurri-Syrjänen, obtained Pointwise estimates to the modified 

Riesz potential. Using the similar results, they obtained 

Poincare Inequality for irregular domain. The inequality of 

Gagliardo-Nirenberg-Sobolev type was established for non-

isotropic Generalized Riesz Potential depending on λ−distance 

by Inan Cinar in [18]. Our point of interest here is to discuss 

boundedness of Reisz Potential by Maximal Operator and then 

to obtain Gagliardo-Nirenberg inequality  

Before moving to the main results, we shall elaborate few 

technical lemmas for Reisz potential for	g � 1  

Lemma 3: If k ⊂ ��  is a measureable set and |	k| 
 ∞, then  

∫l		 1	
|� � �|��� 3� 9 B�3�|k|�� 

Proof: Consider a ball � � ���, �� with |�| � |k| . This 

implies that |k\�| � |�\k|. 
We are able to write: 

2l\0 	 1	
|� � �|��� 3� 9 |k\�| 1	���� 

And 2- |k\�| �	
-?ME 9 2l\0 	 �	

|1�P|?ME 3� as |�| � |k|  and 

|k\�| � |�\k|, then by comparing above inequalities  

2l
1	

|� � �|��� 3� � 2l\0
1	

|� � �|��� 3�
+ 2l∩0

1	
|� � �|��� 3� 

9 20\l
1	

|� � �|��� 3� + 2l∩0
1	

|� � �|��� 3� 

� 20
1	

|� � �|��� 3� 

� B�3�� � B�3�|�|�� � B�3�	|k|�� 

Lemma 4: Let 1 ≤ � < ∞ and assuming |Ω| 
 ∞ then 

‖f��|�|no‖<F�o� 9 B�3, ��	|Ω|��‖�‖<F�o� 
Proof: For � � 1,	by applying Holder inequality, Lemma 3 

can be expressed as 

∫o |����|	
|� � �|��� 3� 

� 2o
|����|	

|� � �|��	�����
1

|� � �| ��Z	����� 3� 

9 p2o
|����|�	

|� � �|	�����q
�� r2o

1	
|� � �|	����� 3�s

��Z
 

9 B|t| ���Z p2o
|����|�	

|� � �|	����� 3�q
��
 

9 B|t|����� p2o
|����|�	

|� � �|	����� 3�q
��
 

For � � 1, the above inequality is satisfied. Hence, Using 

Lemma (3) and Fubini’s theorem  

∫o|f��|�|no����|�3�	 9 B|t|���� 2o2o
|����|�	

|� � �|	����� 3�3� 

9 B|t|���� |t|�� 	2o|����|�3� 

This result gives the idea, if |t| 
 ∞,	 then f�:	'��t� →	'��t� is bounded for 1 ≤ � < ∞. 

We are now able to discuss the boundedness of Reisz 

Potential by the Hardy-Littlewood maximal function for 

general	g. 

Lemma 5: If 0 < g < 3,	then for every � ∈ �� and � > 0, 

there exist B = B�3, g�, such that  

∫0�1,-� |����|�	
|� � �|	���h� 3� 9 B�h����� 

Proof: Let we denote uv � ���, �2w�, x = 0, 1, 2, 3, … 

We can express ∫0�1,-� |i�P�|
|1�P|	�?Mj� 3� 

� { 2|}\|}~E 	 |����|
|� � �|	���h� 3�

:

w�/
 

9 { � �
2w���

h��:

w�/
2|}|����|3� 

� t� ∑ ��
[�

h�� �-
[}�h:w�/ �

o? �-
[}���

 2|} 	|����|3� 

� t� {r12sh�� ��2w�h:
w�/

1
|uw| 	2|} 	|����|3� 

9 B������h { r 12hsw:
w�/

 

Thus, 

∫0�1,-� |i�P�|
|1�P|	�?Mj� 3� 9 B�h�����               (9) 

Or fh���� 9 B�h����� 

This implies clearly our objective about lemma 5. 

With the strong basis of above work and some important 

results we are going to extend our work toward the main 

result for sobolev inequality for Reisz potential.  

Theorem 1: For � � 1	 and g > 0  there exists B =
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B�3, �, g�, such that for all � ∈ '����� 

We have ‖fh�‖<F∗�>?� ≤ B‖�‖<F@>?A, 
Where g� < 3, and �∗ = ����h�F 

Proof: Observe that the claim is exactly right for � = 0 

Consider � ≠ 0	on a set of positive measure, it is obvious 

that �� > 0	everywhere then 

∫>?\0�1,-� |i�P�||1�P|	�?Mj� 3� ≤ �∫>?\0�1,-�	|����|�3��EF �∫>?\0�1,-�	|� − �|	�h����Z3�� EFZ
                      (10) 

We can compute one part of product on right side as 

∫>?\0�1,-�	|� − �|	�h����Z3� = ∫-:∫`0�1,��	|� − �|	�h����Z3a���3� 

= ∫-:	��h���	�W∫`0�1,��	13a���3� 

Since ∫`0�1,��	13a���3� = J������� , above inequality 

can be reduced as  

∫>?\0�1,-�	|� − �|	�h����Z3� = J���	∫-:	��h����Z�\��3� 

Taking integral = L?ME�h����Z�� 	������h��Z
       (11) 

exponent in (11) can be expressed in the form  

3 − �3 − g��W = 3 − �3 − g� �� − 1 

= g� − 3� − 1  

(11) implies,  

∫>?\0�1,-�	|� − �|	�h����Z3� = L?ME�h����Z�� 	�jFM?FME     (12) 

Applying (11), (10) can rewritten as for any constant B,  

∫>?\0�1,-� |i�P�||1�P|	�?Mj� 3� ≤ B	�jFM?FME 	‖�‖<F�>?�    (13) 

recalling lemma (5), we have |fh����| ≤ ∫>? |i�P�||1�P|	�?Mj� 3� 

= ∫0�1,-� |����||� − �|	���h� 3� + ∫>?\0�1,-� |����||� − �|	���h� 3� 

≤ B r�h����� + �h������ 	‖�‖<F�>?�s 

Setting � = �i�1�‖i‖�F��?�
F?
, 

we get  

|fh����| ≤ 	B	�������jF? 	‖�‖jF? <F�>?�           (14) 

Taking exponent �∗ = ����h� on both sides, we have  

|fh����|�∗ ≤ B	������	‖�‖<F�>?�
h�	� 	�∗

 

By lemma (1), 

∫>?|fh����|�∗3� ≤ B‖�‖<F@>?A
jF	? 	�∗ 	∫>? 	������3� 

≤ B	‖�‖<F@>?A
h�	� 	�∗ 	‖��‖<F@>?A�

 

≤ B	‖�‖<F@>?A
h�	� 	�∗ 	‖�‖<F@>?A�

 

Hence, ‖fh�‖<F∗@>?A ≤ B	‖�‖<F@>?A
jF	? �	 �	F∗

 

≤ B‖�‖<F@>?A 
Here �∗ = ����h� is the Sobolev conjugate if g = 1. Also, 

for � = 1 we can produce weak type estimates. 

From (14), for � = 1 there exist B = B�3, g� such that  

|fh����| ≤ 	B	�������h� 	‖�‖h�<E�>?� 
taking maximal function approach for � = 1, we have  

|�� ∈ ��: |fh����| > ^�| 
≤ e�� ∈ ��:	����� > B	^ ���h	‖�‖<E�>?��	h�	∙	 ���h�e 
≤ B	^�	 ���h	‖�‖<E@>?A	 h��h 	‖�‖<E@>?A 

Hence |�� ∈ ��: |fh����| > ^�| ≤ B	^�	 ??Mj	‖�‖<E@>?A	 j?Mj  

This can also give for every	^ > 0, 

|�� ∈ ��: |fh����| ≥ ^�| ≤ B	^�	 ??Mj	‖�‖<E@>?A	 j?Mj       (15) 

It will help us to deduce the proof Sobolev Gagliardo-

Nirenberg Inequality. 

2. Main Result 

Theorem 2: For every, G ∈ H/	����� , if 1 ≤ � < 3 , there 

exist B = B�3, �� such that  

‖G‖<F∗�>?� ≤ B‖_G‖<F@>?A,	�∗ = �33 − � 

Proof: 
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We will split the proof into two cases.  

Case I: First we will take the case for � � 1 

For every, � ∈ ��, we can write from (1.7), ‖G���‖ ≤ 	 �L?ME f��|_G|���� where 1 < � < 3 

Changing the inequality for '�∗����,  

‖G‖<F∗�>?� ≤ 	B‖f��|_G|�‖<F∗�>?� 

By using above theorem (6) for g � 1, we can write  

‖G‖<F∗�>?� ≤ B‖_G‖<F@>?A 
This is the required inequality for � > 1 

Case II: For � = 1, let we consider pairwise disjoint sets 

like  �w = �� ∈ ��: 2w < |G���| 9 2w���, x ∈ � 

Suppose ℊ:� → �, ℊ�^� = max�0,min�^, 1��,	 be an 

auxiliary function and Gw:	�� → [0,1], 
Gw��� = ℊ�2��w|G���| � 1� 

= � 0, |G���| 9 2w��	
	2��w|G���| � 1, 2w�� <	 |G���| 9 2w1, |G���| � 2w 		

	 

Using lemma, if Gw ∈ ��,�����, �I3	x ∈ �  then _Gw = 0 

almost a.e. in ��\�w��. 
We can write, |�w| 9 ��� ∈ ��: |G���| 9 2w�� 

if |G���| 9 2w it implies that 2��w|G���| � 1	 > 1, 

above result can be written as  

|�w| � |�� ∈ ��: Gw��� = 1�| 
9 |�� ∈ ��: f��|_Gw|���� ≥ J����|, by applying  

9 B@	2>? 	|_Gw���|3�	A	 ?
?ME, by applying (15) 

9 	B �	20}ME 	|_Gw���|3�	�	 ����
 

9 B �20}MEℊW�2��w|G���| � 1�2��w 	|_G���|3��
����

 

9 B2�w ���� 	�20}ME|_G���|3��
����

 

Applying summation for x ∈ �, we get 

∫>? 	|G���| ���� � {20} 	|G���| ����
w∈�

	3� 

≤ ∑ 2�w��� ??MEw∈� 	|�w| 
9 B {�20}ME	|_G���|3��

����
w∈�

 

≤ 	B �{∫0}ME	|_G���|3�
w∈�

�
����

 

Hence ∫>? 	|G���| ?
?ME 9 B	@2>? 	|_G���|3�A ?

?ME 

3. Remark 

By considering the fact that H�/���� is dense in ��,����� 

then for G ∈ ��,����� , the Sobolov-Gagliardo-Nirenberg 

inequality follows from the above theorem where 1 ≤ � < I. 
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