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Abstract: In this paper, prey-predator model of five Compartments are constructed with treatment is given to infected prey 

and infected predator. We took predation incidence rates as functional response type II and disease transmission incidence rates 

follow simple kinetic mass action function. The positivity, boundedness, and existence of the solution of the model are 

established and checked. Equilibrium points of the models are identified and Local stability analysis of Trivial Equilibrium 

point, Axial Equilibrium point, and Disease-free Equilibrium points are performed with the Method of Variation Matrix and 

Routh Hourwith Criterion. It is found that the Trivial equilibrium point �� is always unstable, and Axial equilibrium point ��  

is locally asymptotically stable if βk - (t1+d2) < 0, qp1k - d3(s+k) < 0, & qp3k - (t2+d4)(s+k) < 0 conditions hold true. Global 

Stability analysis of endemic equilibrium point of the model has been proved by Considering appropriate Liapunove function. 

In this study, the basic reproduction number of infected prey is obtained to be the following general formula R01=[(qp1-d3)
2
 

kβd3s
2
]⁄[(qp1-d3){(qp1-d3)

2
ks(t1+d2 )+rsqp2 (kqp1-kd3-d3s)}] and the basic reproduction number of infected predator population 

is computed and results are written as the general formula of the form as R02=[(qp1-d3 )(qp3 d3 )k+αrsq(kqp1-kd3-d3s)]⁄[(qp1-d3)
2
 

(t2+d4)k]. If the basic reproduction number is greater than one, then the disease will persist in prey-predator system. If the basic 

reproduction number is one, then the disease is stable, and if basic reproduction number less than one, then the disease is dies 

out from the prey-predator system. Finally, simulations are done with the help of DEDiscover software to clarify results. 
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1. Introduction 

Mathematical Modeling of prey-predator systems of 

interaction of species have a long history since original 

remarkable work was done by Lotka-Volterra Model in 1920 

[1, 3, 5, 6], and SIR model Compartment of systems of 

population is another vital area of research after pioneering 

work of Kermack and Mckendrick [1-3, 5-10]. Anderson and 

May where the first who combined these two modeling 

systems, while Chattopadhyay and Arino were the first who 

used the term ''eco-epidemiology'' for such models [3, 5, 7]. 

The dynamics of disease in prey-predator systems now 

become an interesting area of research due to the fact that 

prey-predator interaction is rich and complex in nature [4, 6, 

7, 11-13]. Several mathematical models have been proposed 

and studied on prey-predator systems [1-7, 9-12]. Many 

studies focused on the study of disease in a prey only [1-5, 7, 

12], other researchers were interested in the study of disease 

within the predator population only [14], and there are also 

some studies on diseases in both prey and predators [6, 9, 11] 

In this paper, we proposed and studied infectious disease on 

both prey and predator interaction of species with treatment 

given to infected prey and infected predator. 

2. Model Formulation and Assumptions 

In this paper, the prey-predator population divided into five 

compartments. let us denote X(t)-Susceptible prey, ���� -

infected prey, ���� -Susceptible predator, 	��� - infected 

predator, 
��� � both infected prey and infected predator 

population under treatment. In the absence of infectious disease, 

the susceptible prey population grows logistically with intrinsic 
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growth rate � and environmental carrying capacity 
 and only 

susceptible prey can reproduce. In the presence of infectious 

disease, susceptible predator become infected predator when 

they come into contact with infected predator, susceptible prey 

become infected prey when they come into contact with infected 

prey and the contact process assumed to follow bilinear 

functional with convolution rate �, � respectively. The predation 

functional response of predator towards the prey assumed to 

follow a different holling type II functional response form with ��,    �� respective predation coefficients of ����, ���� due to 

susceptible predator, and ��, ��respective predation coefficient 

of ����, ���� due to infected predator. suppose Consumed prey 

converted into predator with efficiency � and also half saturated 

constant � . It is also assumed that Infected prey ����  and 

infected predator 	��� can only recover through treatment, and 

treated at treatment rate of��,   ��respectively. The prey-predator 

population 
���, ����, ����,  and 	���  suffer from infectious 

disease with death rate ��, ��, ��, and �� respectively. Moreover, 

Assume that all variables and parameters used in the model are 

non negative. 

Table 1. Notations and description of variables. 

Variables Descriptions X�t�  Population size of susceptible prey W�t�  Population size of infectedprey Y�t�  Population size of susceptible predator Z�t�  Population size of infectedpredator 
���  Population size of infected population under treatment 

Table 2. Notations and Description of parameters. 

parameters Description of parameters �, 
  
Intrinsic growth rate and Carrying capacity of 

susceptible prey  �, �  disease transmission rates of prey and predator respectively t�, t�  
Treatment rate of infected prey and infected predator 

respectively ��, ��  
Recovery rate of infected prey and infected predator 

respectively � , ! = 1,2,3,4  predation coefficients ' , ! = 1,2,3,4  functional response � , ! = 1,2,3,4  death rates �, �  
efficiency of predation, and half-saturation constant 

respectively 

According to the above assumptions, we have the 

following Model flow diagram 

 

Figure 1. Flow Diagram. 

From the Model flow diagram in Figure 1 we have the 

following set of differential equations dX dt⁄ = * + r�H � βXW � p�f� � p�f�        (1) dW dt⁄ = βXW � t�W � d�W � p�f� � p�f�    (2) dY dt⁄ = qp�f� + qp�f� + r�H � αYZ � d�Y      (3) dZ dt⁄ = qp�f� + qp�f� + αYZ � t�Z � d�Z       (4) dH dt⁄ = t�W + t�Z � d�H � r�H � r�H            (5) 

with initial conditions X�0� ≥ 0, W�0� ≥ 0, Y�0� ≥0, Z�0� ≥ 0, H�0� ≥ 0, p5 > 0, ! = 1,2,3,4, & 0 < q ≤ 1 

Depending on the assumptions of per capita growth of 

function *��, ��for susceptible prey, and different type II 

functional responses ' , ! = 1,2,3,4 .We have more feasible 

model (6)-(10) emanated from model(1)-(5) as: dX dt⁄ =  rX�1 � :X + W; k⁄ � + r�H � βXW � :p�XY; :s + X;⁄ � :p�XZ; :s + X;⁄ = f�X, W, Y, Z, H�                 (6) dW dt⁄  = βXW � t�W � d�W � :p�WY; :s + W;⁄ � :p�WZ; :s + W;⁄  = g�X, W, Y, Z, H�                        (7) dY dt⁄ = :qp�XY; :s + X;⁄ + :qp�WY; :s + W;⁄ + r�H � αYZ � d�Y = h�X, W, Y, Z, H�                          (8) dZ dt⁄ = :qp�XZ; :s + X;⁄ + :qp�WZ; :s + W;⁄ + αYZ � t�Z � d�Z = i�X, W, Y, Z, H�                           (9) dH dt⁄ = t�W + t�Z � d�H � r�H � r�H = j�X, W, Y, Z, H�                                            (10) 

with initial conditionsX�0� ≥ 0, W�0� ≥ 0, Y�0� ≥ 0, Z�0� ≥0, H�0� ≥ 0, p�, p�, p�, p� > 0 & 0 < � ≤ 1 

3. Mathematical Analysis of the Model 

In this section, positivity, boundedness, and existence of 

the solution of the model is checked. This mathematical 

analysis of the model could be considered as primarly results. 

Theorem 3.1 [Boundedness] All solutions of Model 

Equations (6)-(10) are bounded in feasible region ℝCD  

Proof: each solutions ����, ����, ����, 	���, 
��� of the 

model is bounded if and only if total population N is bounded. 

Let total population of prey-predator N = X + W + Y +Z + H. ForΛ > 0 be constant, 
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  :dN dt⁄ ; + ΛN = :dX dt⁄ ; + :dW dt⁄ ; + :dY dt⁄ ; + :dZ dt⁄ ; + :dH dt⁄ ; + ΛN                              (11) 

By substitute all model Equations (6)-(10)into (11) and 

removing all negative terms, we have the following results :dN dt⁄ ; + ΛN ≤rX + :�qp�XY� �s + X�⁄ ; + :�qp�WY� �s + W�⁄ ; +:�qp�WZ� �s + W�⁄ ; + :�qp�XZ� �+X�⁄ ; + ΛN = μ . Then dN dt⁄ + ΛN ≤ μ, Solving the differential inequality, yields: N�t� ≤ :μ Λ⁄ ;�1 � eJKL� + N�0�eJKL att → ∞, N → :μ Λ⁄ ;. 

we know that total prey-predator population is non-negative 

and hence 0 ≤ N�t� ≤ :μ Λ⁄ ;So we have invariant feasible 

region: 

 Ω = P��, �, �, 	, 
� ∈ ℝCD : 0 ≤ N�t� ≤ :μ Λ⁄ ;S . 

This prove the theorem and the model is Mathematically well 

posed 

Theorem 3.2[Positivity] All solutions of Model (6)-(10) 

are non negative. 

Proof: To prove theorem 3.2, We have to show that 

variables X �t �, W�t �, Y �t �, Z �t �, H �t � of the Models (6)-

(10) are non-negative ∀� ≥ 0. 

1. Positivity of X(t):From the Susceptible prey Model (6), dX dt⁄ = rX�1 � :�X + W� k⁄ ;� + r�H � βXW �:�p�XY� �s + X�⁄ ; � :�p�XZ� �s + X�⁄ ; Without loss of 

generality, After removing all the positive terms from 

the right hand side of the differential equation, we have 

the following differential inequality;  dX dt⁄ ≥ ��:�rX� + rXW� k⁄ ; + βXW+ :�P�XY + P�XZ� �S + X�⁄ ;� 

divide both sides by negative yields: 

 �:dX dt⁄ ; ≤:�rX� + rXW� k⁄ ; + βXW + :�P�XY + P�XZ� �S + X�⁄ ;, 
But It is also clear that the following inequality holds :�rX� + rXW� k⁄ ; + βXW +:�P�XY + P�XZ� �S + X�⁄ ; ≤ rX� + rXW + βXW +p�XY + p�XZ = X�rX + rW + βW + p�Y + p�Z� 

Assume that rW + βW + p�Y + p�Z = C, Then the 

differential inequality reduced to �:dX dt⁄ ; ≤X�rX + C�.This inequality can be arranged for 

integration by partial fraction asX:1 PX�rX + C�S⁄ ;dX ≥X �d t, integrating results X�:1 Y⁄ ; :�;⁄ + :��� Y⁄ �; :�� + Z;⁄ ��� ≥ � X dt, Thus :1 C⁄ ;:�[\|�|� Z⁄ ; � :1 Z⁄ ; ln|rX + C| ≥ �� + `, where 

Q is integration constant. Using rules of logarithm the 

inequality can be written as:  ln|� �rX + C�⁄ | ≥ �Z� + Z`. Finally solving for X will 

give as ���� ≥ :�aZbJcd� �1 � �abJcd�⁄ ;, where a = bce. Therefore ���� > 0for1 � �abJcd > 0. That 

is ���� is non-negative for � > :1 Z⁄ ; ln��a� 

2. Positivity of W(t): From infected prey Model (7) dW dt⁄ = βXW � t�W � d�W � :�p�WY� �s + W�⁄ ; �:�p�WZ� �s + W�⁄ ;, Without loss of original generality, 

after removing the positive term (βXW). we obtain the 

following differential inequality, �� ��⁄ ≥ ��t�W + d�W + :�p�WY� �s + W�⁄ ; +:�p�WZ� �s + W�⁄ ;� if  � fgfd ≤ �t�W + d�W + :�p�WY� �s + W�⁄ ; +

:�p�WZ� �s + W�⁄ ;�, But it is clear that the inequality t�W + d�W + :�p�WY� �s + W�⁄ ; +:�p�WZ� �s + W�⁄ ; ≤ t�W + d�W + p�WY + p�WZ =�t� + d� + p�Y + p�Z� Wholds true. Now Assume thatt� +d� + p�Y + p�Z = C. Then we have�:�� ��⁄ ; ≤ ZW�, Now 

applying integration yield ln|�| ≥ �Z� + ` , where ` is 

integration constant, Then solving for the variable ���� 

gives the equation ���� ≥ bJcdCe which is exponential 

function and positive at all time. Hence ���� is positive. 

3. Positivity of Y(t):From Susceptible predator Model (8)  dY dt⁄ = :�qp�XY� �s + X�⁄ ; + :�qp�WY� �s + W�⁄ ; +r�H � αYZ � d�Y, without loss of original generality, 

after removing all positive terms �:�qp�XY� �s + X�⁄ ; + :�qp�WY� �s + W�⁄ ; + r�H� 

we obtain differential equation;dY dt⁄ ≥ ��αz + d��y , Then 

applying integration by separable of variable method results, ln|y| ≥ ��αz + d��t + Q ,where Q  integration constant and 

solving for variable ���� ,we obtain the solution |y| ≥eJ�klCmn�LCo . Therefore y�t� ≥ eJ�klCmn�LCo  is a positive 

exponential function.. hence y(t) is positive. 

4. Positivity of Z(t):From the infected predator Model (9) dZ dt⁄ = :�qp�WZ� �s + W�⁄ ; + :�qp�XZ� �s + W�⁄ ; + αYZ� t�Z � d�Z 
after removing all positive terms; �:�qp�WZ� �s + W�⁄ ; + :�qp�XZ� �s + W�⁄ ; + αYZ�, 

we obtain the differential inequality; dZ dt⁄ ≥ ��t� + d��z  
Applying integration by separable of variable method yield [\|p| ≥ ��t� + d��t + Q where  Q  integration constant 

integration by separable of variable method, Then solving 

for 	 will result p��� ≥ eJ�LqCmr�LCo whichis exponential 

function that is positive at all time. hence 	��) is positive 

5. Positivity of H(t):From infected prey and infected 

predator population under treatment model (10) dH dt⁄ = t�W + t�Z � d�H � r�H � r�H, Without loss of 

generality, after removing all positive terms, we have the 

differential inequality dH dt⁄ ≥ ��d� + r� + r��H  iff dH H⁄ ≥ ��d� + r� + r��dt which implies that [\|
| ≥��d� + r� + r��t + Q, and solving the variable 
 

provides|
| ≥ bJ�msCtsCtq�LCo is exponential function which 

is positive at all time. Therefore ��� > 0, and hence H(t) is 

positive. Thus, variables����, ����, ����, 	��� and 
���are 

all positive quantities and remain in ℝCD for all �. 

Theorem 3.3 [Existence] All Solutions of the model (6) -

(10) together with the initial conditions��0� > 0, ��0� ≥0, ��0� ≥ 0, 	�0� ≥ 0, 
�0� ≥ 0 exist inℝCD  i.e., the model 

variables ����, ����, ����, 	��� and 
��� exist for all � and 

remain in ℝCD . 

Proof: From the system of differential equation (6)-(10) 

given as have partial derivatives in the following Table 3 

According to Derrick and Groosman theorem, let Ω denote 

the region Ω =  P��, �, �, 	, 
� ∈ ℝCD ; N ≤ �μ Λ⁄ �S . 

Then model (2)-(10) have a unique solution if all partial 

derivatives of the above functions are continuous and 

bounded in Ω.  
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Here, The continuity and the Boundedness can be shown 

as follows: 

 

Table 3. Partial derivatives. 

For '��, �, �, 	, 
�: |w' w�⁄ | = xr � :�2rx + rW� k⁄ ; � βW � z{s�p�Y + p�Z�| ��s + X���⁄ }x < ∞ |w' w�⁄ | = |� rX k⁄ � βX| < ∞ |w' w�⁄ | = |� �p�X� �s + X�⁄ | < ∞ |w' w	⁄ | = |� �p�X� �s + X�⁄ | < ∞ |w' w
⁄ | = |r�| < ∞ 

For ℎ��, �, �, 	, 
�: |wℎ w�⁄ | = |�sqp�Y� ��s + X���⁄ | < ∞ |wℎ w�⁄ | = |�sqp�Y� ��s + X���⁄ | < ∞ |wℎ w�⁄ | = |�qp�X� �s + X� + �qp�W� �s + W�⁄⁄  + �αZ � d�| < ∞ |wℎ w	⁄ | = |�αy � d�| < ∞ |wℎ w
⁄ | = r� < ∞ 

For  *��, �, �, 	, 
�: |w* w�⁄ | = |βW| < ∞ |w* w�⁄ | = xβX � t� � d� � �{s�p�Y + p�Z�| ��s + W���⁄ �x < ∞ |w* w�⁄ | =  |� �p�W� �s + W�⁄ | < ∞ |w* w	⁄ | = |� �p�W� �s + w�⁄ | < ∞ |w* w
⁄ | = 0 < ∞ 

For !��, �, �, 	, 
�: |w! w�⁄ | = |�sqp�Z� ��s + X���⁄ | < ∞ |w! w�⁄ | = |�sqp�Z� ��s + W���⁄ | < ∞ |w! w�⁄ | = |αZ| < ∞, |w! w	⁄ | = |�qp�X� �s + X�⁄ + �qp�W� �s + W�⁄ � αY � t� � d�| < ∞ |w! w
⁄ | = 0 < ∞ 

For ���, �, �, 	, 
�: |w� w�⁄ | = 0 < ∞ |w� w�⁄ | = t� < ∞ |w� w�⁄ | = 0 < ∞ |w� w	⁄ | = |t�| < ∞ |w� w
⁄ | = | � d� � r� � r�| < ∞ 

 

 

Thus, all the partial derivatives of these functions exist, 

continuous, and bounded in a regionΩ forallpositive values 

ofmodel variable and model parameter. Hence, by Derrick 

and Groosman theorem, a solution for the model (6)-(10) 

exists and unique. 

4. Stability Analysis 

Stability analysis in the absence of predators in model, 

That is when y(t) and Z(t) are Zero, model (6)-(10) can be 

Written as 

dX dt⁄ = rX�1 � :�X + W� k⁄ ;� + r�H � βXW = f�X, W, H� (12) dW dt⁄ = βXW � t�W � d�W = g�X, W, H�         (13) dH dt⁄ = t�W � d�H � r�H = h�X, W, H�              (14) 

The system (12)-(14) has the following equilibrium points: 

trivial equilibrium points ���0, 0, 0�, Axial Equilibrium 

point ���
, 0, 0�  and positive equilibrium point  ����, �, 
� where, � = 
 � :�
�� �⁄ ; � :� ��� + ���⁄ ;+ z�
������ {���� + ������ + ���|⁄ }, 
 � = � ��� + ���⁄ , 
 = � :��� + ������ + ���;⁄ , with Next Generation 

Matrix ���, �, 
�
= �� � :�2�� + ��� 
⁄ ; � �� �:���� 
⁄ ; � �� ���� �� � �� � �� 00 �� ��� � ��� 

Theorem 4.1 The Trivial Equilibrium ��  isa Saddle point 

With Unstable manifold in X-direction and Stable Manifold 

in the WY-plane. 

Proof: The Jacobian matrix at �� is given by 

����� = �� 0 ��0 ��� � �� 00 �� ��� � ��� 

to compute eigen values compute the det������ � ���� = 0 

�� � � 0 ��0 ��� � �� � � 00 �� ��� � �� � �� = 0 

Then �� � ������ � �� � ������ � �� � �� = 0 is the 

characteristic polynomial. Thus Eigen Values are:�� = � >0, �� = ��� � �� < 0, �� = ��� � �� < 0 is a saddle point 

with unstable manifold in X-direction and stable manifold in 

WY-plane. 

Theorem 4.2 The Axial Equilibrium ��is a saddle point if �
 � �� � �� > 0and unstable manifold in X- direction if �
 � �� � �� < 0,then ��stable 

Proof: The Jacobian matrix at �� is given by 

����� = ��� �� � �
 ��0 �
 � �� � �� 00 �� ��� � ��� 

to compute eigen values compute the det������ � ���� = 0 

��� � � �� � �
 ��0 �
 � �� � �� � � 00 �� ��� � �� � �� = 0 

Then ��� � ����
 � �� � �� � ������ � �� � �� = 0  is 

characteristic polynomial. Thus �� = �� < 0, �� = �
 � �� ���, �� = ��� � �� < 0,hence Axial equilibrium point is saddle 

point if �
 � �� � �� > 0and stable if �
 � �� � �� < 0 

Stability Analysis in the absence of infectious Disease in 

the system(2) That is When there is no disease(t),Z(t) and H(t) 

are all zero and Model(6)-(10) becomes 
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dX dt⁄ = rX�1 � :�X + W� k⁄ ;� � :�p�XY� �s + X�⁄ ; = f�X, Y�                                            (15) dY dt⁄ = :�qp�XY� �s + X�⁄ ; � d�Y = g�X, Y�                                                (16) 

This system Contain trivial ���0, 0�, Axial ���
, 0� and positive ����, �� Equilibrium points, where 

� = ����
 � �� + √��
�� + 2
�� + ���� � 4
��� :2�;� � 

� = ������ ��� �� + ����
 � �� + √��
�� + 2
�� + ��� � 4
��� �2��� ���� � 

with Jacobian matrix is given by 

���, �� = �� � :�2��� 
⁄ ; � :������ ��� + ����⁄ ; :����; :� + 
;⁄:�����; :�� + ���;⁄ :����; :� + �;⁄ � ��� 

Theorem 4.4The trivial equilibrium �� isa saddle point with unstable manifold in X-direction and stable manifold in Y-

direction 

Proof: The Jacobian matrix at��is given by 

����� = �� 00 ���� 

hence eigen values are:�� = � > 0, �� = ��� < 0 which is a saddle point. 

Theorem 4.5 The axial equilibrium �� is stable if
��s��C� � �� < 0,otherwise unstable 

proof: The Jacobian Matrix at �� is given by 

����� = ��� � :��
; :� + 
;⁄0 � :��
; :� + 
;⁄ � ��� 

To find eigen values compute det������ � ���� = 0 

��� � � � :��
; :� + 
;⁄0 :���
; :� + 
;⁄ � �� � �� = 0 

Eigen values are: �� = �� < 0, �� = :���
; :� + 
;⁄ � �� 

Thus �� is stable if 
��s��C� � �� < 0andotherwise unstable. 

Theorem 4.6 The positive equilibrium � isstable if P� � �2��� 
⁄ � :����; :�� + ���;⁄ S + P:���
; :� + 
;⁄ � ��S > 0and P� � �2��� 
⁄ � :����; :�� + ���;⁄ S ∗ P:���
; :� + 
;⁄ � ��S + P:�������; :�� + ���;⁄ S > 0 

proof: The Jacobian Matrix at � is given by 

���, �� = �� � :2��; 
⁄ � :����; �� + ���⁄ :����; :� + 
;⁄:�����; :�� + ���;⁄ :����; :� + �;⁄ � ��� 

Then compute det����� � ���� = 0 

�� � :2��; 
⁄ � :����; :�� + ���;⁄ � � :����; :� + 
;⁄:�����; :�� + ���;⁄ :����; :� + �;⁄ � �� � �� = 0 

Then 

�� � :�2��� 
⁄ ; � :������ ��� + ����⁄ ;������������������������ ¡ � �� �:������ �� + ��⁄ ; � ���������������� ¢ � �� + :��������� ��� + ����⁄ ;���������������� £ = 0 

is characteristic polynomial. Using Routh Hourwith criterion the quadratic polynomial is stable if ¤ + ¥ > 0, ¤¥ + Y > 0 

otherwise unstable. Equilibrium points Model(2)-(10) are Steady state points of the form ��, �, �, 	, 
�ofmodel (2) 

that satisfiesdX dt⁄ = dW dt⁄ = dY dt⁄ = dZ dt⁄ = dH dt⁄ = 0,provided that each variable is non-negative. In Model(2) Five 

steady state points are identified and listed here: trivial steady state E§�0, 0, 0, 0, 0� , Axial steady 

stateE¨�k, 0, 0, 0, 0�,Disease-free steady state �©��©, 0, �©, 0, 0� and endemic steady state E∗�X∗, W∗, Y∗, Z∗, H∗�. 

computation of disease free and endemic equilibrium points are presented as follows: 

Disease free equilibrium points[DFEP] of model(2)-(10) are steady state Solutions when there is no infectious disease in the 

population. In the absence of infectious disease in prey-predator system the variables���� = 	��� = 
��� = 0 anddX dt⁄ =dW dt⁄ = dY dt⁄ = dZ dt⁄ = dH dt⁄ = 0,Then model(2)-(10) become 
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ª��©�1 � :�© 
⁄ ;� � :����©�©� �� + ��⁄ ; = 0:�����©�©� �� + �©�⁄ ; � ���©  = 0  

Thus solving �© and�©,it is found that �© = P�d�s� �qp� � d��⁄ S&�© = �{rsq�kqp� � kd� � d�s�| ��qp� � d���k�⁄ �,and 

Hence disease-free equilibrium point(DFEP) of Model (2)is given by 

E« = PX«, 0, Y«, 0, 0S = ��d�s� �qp� � d��⁄ , 0, {rsq�kqp� � kd� � d�s�| ��qp� � d���k�⁄ , 0, 0� 

The endemic equilibrium point[EEP]is positive equilibrium point E∗�X∗, W∗, Y∗, Z∗, H∗� obtained by solving modelequation 

(2) as dX dt⁄ = dW dt⁄ = dY dt⁄ = dZ dt⁄ = dH dt⁄ = 0 for which all variables are non zero 

¬­®
­̄rX∗�1 � :�X∗ + W∗� k⁄ ;� + r�H∗ � βX∗W∗ � :�p�X∗Y∗ + p�X∗Z∗� �s + X∗�⁄ ; = 0βX∗W∗ � t�W∗ � d�W∗ � :�p�W∗Y∗ + p�W∗Z∗� �s + W∗�⁄ ;  = 0:�qp�X∗Y∗� �s + X∗�⁄ ; + :�qp�W∗Y∗� �s + W∗�⁄ ; + r�H∗ � αY∗Z∗ � d�Y∗  = 0:�qp�X∗Z∗� �s + X∗�⁄ ; + :�qp�W∗Z∗� �s + W∗�⁄ ; + αY∗Z∗ � �t� + d��Z∗  = 0t�W∗ + t�Z∗ � �d� + r� + r��H∗  = 0

 

Then solving for the variables X∗, W∗, Y∗,  Z∗, &
∗, the endemic equilibrium points of the model exists, and a simplified 

result obtained as: �∗ = P����� + :2
� � �� � 2
�;���� � ���� + 2
�����S 

W∗ = ��β � s�d� + t�� � �4�sβ � p� � p���t� + d�� + �s:t� + d�; � β��� :2�t� + d��;� � 

�∗ = ��� + z{� � ���� + ���|���} :2
������� + ���;⁄ � 

	∗ = ��� + :���; �� + �� � ��� + ��� + �4��� � �� � ������ + ��� + �s:t� + d�; � β��� {2��� + ���|� �� � ��� + ���� � 

H∗ = P�� � � + :�� � ���� � ����; :2
��� + ���;⁄ � ��⁄ S 
To study the Stability analysis of equilibrium points of model (6)-(10), it is better to linearize mode (6)-(10) using Variation 

matrix. Then the Variation Matrix of these functions (6)-(10)is given by 

V�X, W, Y, Z, H� =
±
²³

f´ fµ f¶ f· f¸g´ gµ g¶ g· g¸h´ hµ h¶ h· h¸i´ iµ i¶ i· i¸j´ jµ j¶ j· j¸ ¹
º» 

Where each element of the matrix represent partial derivatives of functions (6)-(10) with respect to model variables, and 

Computations of each element of the variation matrix given as: 

V�X, W, Y, Z, H� =
±
²²³

f´ � �rX� k⁄ � βX � �p�X� �s + X�⁄ � �p�X� �s + X�⁄ r�βW gµ � �p�W� �s + W�⁄ � �p�W� �s + w�⁄ 0:sqp�Y; :�s + X��;⁄ :sqp�Y; :�s + X��;⁄ h¶ �αy � d� r�:sqp�Z; :�s + X��;⁄ :sqp�Z; :�s + W��;⁄ αZ il 00 t� 0 t� �d� � r� � r�¹
ºº»     (17) 

where f´ = r � :�2rx� k⁄ ; � :�rW� k⁄ ; � βW � P:s�p�Y + p�Z�; :�s + X��;⁄ S, gµ = βX � t� � d� � P:s�p�Y + p�Z�; :�s + W��;⁄ S, h¶ = P�qp�X� �s + X�⁄ S + P:qp�W; :s + W;⁄ S � αZ � d�, il = P:qp�X; :s + X;⁄ S + P:qp�W; :s + W;⁄ S � αY � t� � d�, 
Theorem 4.7[TEP] Trivial equilibrium point E§�0, 0, 0, 0, 0� is always locally asymptotically unstable. 
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Proof: Consider the Variation Matrix (17) at  E§ 

V�E§� =
±
²³

r 0 0 0 r�0 �t� � �� 0 0 00 0 ��� 0 r�0 0 0 �t� � �� 00 t� 0 t� ��� � r� � r�¹
º» 

Eigen value of variation matrix can be computed from the characteristic polynomial det�V�E§� � ��D� = 0 

¼¼
r � λ 0 0 0 r�0 �t� � �� � λ 0 0 00 0 ��� � λ 0 r�0 0 0 �t� � �� � λ 00 a� 0 a� ��� � r� � r� � λ¼¼ = 0 

⟹ �r � λ���t� � �� � λ����� � λ���t� � �� � λ����� � r� � r� � λ� = 0 is the characteristic polynomial. 

The eigen values are: λ� = r > 0, λ� = �t� � �� < 0, λ� = ��� < 0, λ� = �t� � �� < 0, λD = ��� � r� � r� < 0, Thus the trivial equilibrium 

point is a saddle point with locally asymptotically unstable manifold in X-direction, and locally asymptotically stable manifold 

in �, �, 	, 
 directions. 

Theorem 4.8[AEP] Axial Equilibrium Point E¨�k, 0,0,0,0� exists and always locally asymptotically stable in model(2)if and 

only if model parameters satisfy the conditions: βk � t� � �� < 0, :�qp�k� �s + k�⁄ ; � �� < 0, &:�qp�k� �s + k�⁄ ; � t� ��� < 0. otherwise E� is locally asymptotically unstable. 

Proof: Consider the Variation matrix (17) at J�E¨� 

V�E¨� =
±
²³

�r �r � βk �:�p�k� �s + k�⁄ ; �:�p�k� �s + k�⁄ ; r�0 βk � t� � �� 0 0 00 0 :�qp�k� �s + k�⁄ ; � �� d� r�0 0 0 :�qp�k� �s + k�⁄ ; � t� � �� 00 t� 0 t� ��� � r� � r�¹
º» 

Then it is possible to find eigen value from characteristic matrix asÁb��V�E¨� � λID� 

¼¼
�r � λ �r � βk �:�p�k� �s + k�⁄ ; �:�p�k� �s + k�⁄ ; r�0 βk � t� � �� � λ 0 0 00 0 :�qp�k� �s + k�⁄ ; � �� � λ d� r�0 0 0 :�qp�k� �s + k�⁄ ; � t� � �� � λ 00 t� 0 t� ��� � r� � r� � λ¼¼ 
��r � λ��βk � t� � �� � λ��:�qp�k� �s + k�⁄ ; � �� � λ��:�qp�k� �s + k�⁄ ; � t� � �� � λ����� � r� � r� � λ� 

is characteristic polynomial. Then Eigen values are roots of this polynomial λ� = �r < 0, λ� = ��� � r� � r� < 0, λ� = βk � t� � ��, λ� = :�qp�k� �s + k�⁄ ; � ��, λD = :�qp�k� �s + k�⁄ ; � t� � �� 

The Axial equilibrium point E� is locally asymptotically stable, if βk � t� � �� < 0, :�qp�k� �s + k�⁄ ; � �� < 0, &:�qp�k� �s + k�⁄ ; � t� � �� < 0 
otherwise E� is locally asymptotically unstable. 

Theorem 4.9 [DFEP] The disease- free equilibrium point �©��©, 0, �©, 0, 0� = �:�d�s� �qp� � d��⁄ ;, 0, z{rsq�kqp� � kd� � d�s�| ��qp� � d���k�⁄ }, 0, 0� 

exists and always locally asymptotically stable if and only if the model parameter satisfy conditions: βX« � t� � d� � :�sp�Y«� �s��⁄ ; ≤ 0, :�qp�X«� �s + X�⁄ ; � α�© � t� � d� ≤ 0 and Pr � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ;S +P:�qp�X«� �s + X«�⁄ ; � d�S > 0 &Pr � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ;S ∗ P:�qp�X«� �s + X«�⁄ ; � d�S + :�sqp��X«�� ��s + X«���⁄ ; > 0 

Proof: Consider the Variation matrix (17) at disease-free equilibrium point �©��©, 0, �,« 0,0�such that  Ã��©� = 
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±
²²²
³r � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ; �:�rX«� k⁄ ; � βX« �:�p�X«� �s + X«�⁄ ; �:�p�X«� �s + X«�⁄ ; r�0 βX« � t� � d� � sp�Y«s� 0 0 0:�sp�Y«� ��s + X«���⁄ ; :�sqp�Y«� ��s + X«���⁄ ; :�qp�X«� �s + X«�⁄ ; � d� �αY« � d� r�0 0 0 :�qp�X«� �s + X«�⁄ ; � αY« � t� � d� 00 t� 0 t� �d� � r� � r�¹

ººº
»

 

Then it is possible to find the determinant of the variation matrix asÁb�� Ã��©� � ��D� 

¼
¼r � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ; � λ �:�rX«� k⁄ ; � βX« �:�p�X«� �s + X«�⁄ ; �:�p�X«� �s + X«�⁄ ; r�0 βX« � t� � d� � sp�Y«s� � λ 0 0 0:�sp�Y«� ��s + X«���⁄ ; :�sqp�Y«� ��s + X«���⁄ ; :�qp�X«� �s + X«�⁄ ; � d� � λ �αY« � d� r�0 0 0 :�qp�X«� �s + X«�⁄ ; � αY« � t� � d� � λ 00 t� 0 t� �d� � r� � r� � λ¼

¼
 

�βX« � t� � d� � :�sp�Y«� �s��⁄ ; � λ� ∗ �:�qp�X«� �s + X«�⁄ ; � αY« � t� � d� � λ� ∗ ��d� � r� � r� � λ� ∗ P�r � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ; � λ� ∗ �:�qp�X«� �s + X«�⁄ ; � d� � λ� + :�sqp��X«�� ��s + X«���⁄ ;S = 0 

Eigen values are: λ� = βX« � t� � d� � :�sp�Y«� �s��⁄ ;, λ� = :�qp�X«� �s + X«�⁄ ; � αY« � t� � d�, λ� = �d� � r� � r� 

and the remaining eigen values can be obtained from the roots of quadratic equation: 

�r � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ;������������������������ ¡ � λ� �:�qp�X«� �s + X«�⁄ ; � d��������������� ¢ � λ� + :�sq p��X«�� ��s + X«���⁄ ;���������������� £ = 0 

It is known that a quadratic equation�¤ � ���¥ � �� + Y = 0  is locally asymptotically stable iff¤ + ¥ > 0 & ¤¥ + Y >0,Using such Routh Hurwitz criterion, the disease free equilibrium point�©�X«, 0, Y,« 0,0�is locallyasymptotically stable ifPr �:�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ;S + P:�qp�X«� �s + X«�⁄ ; � d�S > 0, &Pr � :�2rX«� k⁄ ; � :�sp�Y«� ��s + X«���⁄ ;S ∗ P:�qp�X«� �s + X«�⁄ ; � d�S + �sq p��X«�� ��s + X«���⁄ > 0 λ� = βX« � t� � d� � :�sp�Y«� �s��⁄ ; ≤ 0, &λ� = :�qp�X«� �s + X«�⁄ ; � α�© � t� � d� ≤ 0 where, �© = P�d�s� �qp� � d��⁄ S&�© =z{rsq�kqp� � kd� � d�s�| ��qp� � d���k�⁄ },Otherwise the disease free equilibrium point is asymptotically unstable. Now let 

see again, the Global stability analysis of model(2) around the endemic equilibrium point or positive equilibrium point �∗��∗, �∗, �∗, 	∗, 
∗� which showsco-existence. For that let us state following theorem and prove by taking appropriate 

Liapunove function L. 

Theorem 4.10[Global stability] Endemic Equilibrium point �∗��∗, �∗, �∗, 	∗, 
∗� exists and globally asymptotically stable. 

Proof: Define appropriate Liapunove function Ä��, �, �, 	, 
� = P:�� � �∗��; 2⁄ S + P:���� � �∗��; :2;⁄ S + P:���� � �∗��; :2;⁄ S + P:���	 � 	∗��; :2;⁄ S +P:�
 � 
∗��; :2;⁄ S .where ��, ��, ��, �� > 0  are chosen properly such that, �Ä ��⁄ = 0 ∀��∗, �∗, �∗, 	∗, 
∗� ∈ ℝCD and �Ä ��⁄ ≤ 0 ∀��, �, �, 	, 
� ∈ ℝCD .This implies�∗of the system is Liapunove stable and�Ä ��⁄ < 0, ∀��, �, �, 	, 
� ∈ ℝCD near �∗. This implies �∗ is globally asymptotically stable point. Now differentiate the liapunove function L with respect oftimet as: 

�Ä ��⁄ = �� � �∗�:�� ��⁄ ; + α��� � �∗�:�� ��⁄ ; + α��� � �∗�:�� ��⁄ ; + α��	 � 	∗�:�	 ��⁄ ; + α��
 � 
∗�:�
 ��⁄ ;         (18) 

Now substitute the model (6)-(10) into (18), we have the following equation dL dt⁄ = �� � �∗�:rX�1 � :X + W; k⁄ � + r�H � βXW � :p�XY; :s + X;⁄ � :p�XZ; :s + X;⁄ ;+ α��� � �∗�:βXW � t�W � d�W � :p�WY; :s + W;⁄ � :p�WZ; :s + W;⁄ ;+ α��� � �∗�::qp�XY; :s + X;⁄ + :qp�WY; :s + W;⁄ + r�H � αYZ � d�Y ;+ α��	 � 	∗�::qp�XZ; :s + X;⁄ + :qp�WZ; :s + W;⁄ + αYZ � t�Z � d�Z;+ α��
 � 
∗�:t�W + t�Z � ��H � r�H � r�H; 
Take out �, �, �, 	, 
 from each bracket and write a change as follows dL dt⁄ = �� � �∗��� � �∗�zr�1 � :�X + W� k⁄ ;� + :�r�H� X⁄ ; � βW � :�p�Y� �s + X�⁄ ; � :�p�Z� �s + X�⁄ ;} +α��� � �∗��� � �∗�zβX � t� � d� � :�p�Y� �s + W�⁄ ; � :�p�Z� �s + W�⁄ ;} + α��� � �∗��� � �∗�z:�qp�X� �s + X�⁄ ; +
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:�qp�W� �s + W�⁄ ; + :�r�H� Y⁄ ; � αZ � d�} + α��	 � 	∗��	 � 	∗�z:�qp�X� �s + X�⁄ ; + :�qp�W� �s + W�⁄ ; + αY � t� �d�} + α��
 � 
∗��
 � 
∗�::�t�W� 
⁄ ; + :�t�Z� 
⁄ ; � d� � r� � r�; , By rearranging, it is obtain that: dL dt⁄ = ��� � �∗��z�r�1 � :�X + W� k⁄ ;� � :�r�H� X⁄ ; + βW + :�p�Y� �s + X�⁄ ; + :�p�Z� �s + X�⁄ ;} � α��� � �∗��z�βX + t� + d� +:�p�Y� �s + W�⁄ ; + :�p�Z� �s + W�⁄ ;} � α��� � �∗��:�:�qp�W� �s + W�⁄ ; � :�r�H� Y⁄ ; + αZ + d�; �α��	 � 	∗��:�:�qp�X� �s + X�⁄ ; � :�qp�W� �s + W�⁄ ; � αY + t� + d�; � α��
 � 
∗��:�:�t�W� 
⁄ ; � :�t�Z� 
⁄ ; + d� + r� + r�; .Thus 

it is possible to set��, ��, ��, ��such thatdL dt⁄ ≤ 0 and endemic equilibrium point �∗ is globally stable point. 

5. Basic Reproduction Number 

The basic reproduction number denoted by RÇ and defined as the expected number of people getting secondary infection 

among the whole susceptible population. This number shows a potential for spread of disease within a given population. 

When  RÇ < 1 each infected individual produces on average less than one new infected individual so that the disease is 

expected to die out. On the other hand ifÈÇ > 1, then each individual produces more than one new infected individual so that 

the disease is expected to continue spreading in the population 

Theorem 5.1 The basic reproduction number for infected prey at Disease free equilibrium point(DFEP) �©��©, 0, �©, 0,0� = �:d�s; :qp� � d�;⁄ , 0, :rsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ , 0, 0�is given by ÈÇ� = :�qp� � d���kβd�s�; :�qp� � d��P�qp� � d���ks�t� + d�� + rsqp��kqp� � kd� � d�s�S;⁄  

Proof: Consider infected prey equation in (7): dW dt⁄ = βXW � t�W � d�W � :p�WY; :s + W;⁄ � :p�WZ; :s + W;⁄ = �βX � :t� + d� + :p�Y; :s + W;⁄ + :p�Z; :s + W;⁄ ;� W . Now 

let us define functions F and V, É = βX, Ã = t� + d� + :p�Y; :s + W;⁄ + :p�Z; :s + W;⁄ ,Evaluate F and V at DFEP �©�X«, 0, Y«, 0,0� = �:d�s; :qp� � d�;⁄ , 0, :rsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ , 0, 0� É��©� = βX« = :βd�s; :qp� � d�;⁄ , Ã��©� = t� + d� + :�p�Y«� s⁄ ; = t� + d� + z{rsqp��kqp� � kd� � d�s�| ��qp� � d���ks�⁄ } 
which more simplified to Ã��©� = P:�qp� � d����t� + d��ks + rsqp��kqp� � kd� � d�s�; :�qp� � d���ks;⁄ S 

Then the basic reproduction number of infected prey is ÈÇ� = ÉÃJ� = P:βd�s; :qp� � d�;⁄ S ∗ P:�qp� � d���ks; :�qp� � d����t� + d��ks + rsqp��kqp� � kd� � d�s�;⁄ S  ÈÇ� = P:�qp� � d���kβd�s�; :�qp� � d��P�qp� � d����t� + d��ks + rsqp��kqp� � kd� � d�s�S;⁄ S 

Theorem 5.2. The basic reproduction number for infected predators at Disease-free equilibrium point (DFEP) �©��©, 0, �©, 0,0� = �:d�s; :qp� � d�;⁄ , 0, :rsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ , 0, 0� is given by ÈÇ� = P:�qp� � d���qp�d��k + αrsq�kqp� � kd� � d�s�; :�qp� � d����t� + d��k;⁄ S 

Proof: Consider the infected predator model equation in (9): m·mL = :qp�XZ; :s + X;⁄ + :qp�WZ; :s + W;⁄ + αYZ � t�Z � d�Z = P:qp�X; :s + X;⁄ + :qp�W; :s + W;⁄ + αY ��t� + d��SZ. Now let us define functions F &V as follows: 

 É = :qp�X; :s + X;⁄ + :qp�W; :s + W;⁄ + αY, and   V = t� + d�  Then Evaluate  É  and Ã  at (DFEP) �©��©, 0, �©, 0,0� =�:d�s; :qp� � d�;⁄ , 0, :rsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ , 0, 0�, Then we have É��©� = P:qp�d�s; :s�qp� � d��;⁄ S + P:αrsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ S  = :�qp� � d���qp�d��k + αrsq�kqp� � kd� � d�s�; :�qp� � d���k;⁄ , and V��©� = t� + d� 

Therefore the basic reproduction number of infected predator is ÈÇ� = ÉÃJ�and hence ÈÇ� = P:�qp� � d���qp�d��k + αrsq�kqp� � kd� � d�s�; :�qp� � d����t� + d��k;⁄ S 

6. Simulation 

In this section, Simulation of model (6)-(10) is carried out using DEDiscover Version: 2.6.4. software. For Simulation, a set 

of meaningful values are assigned to model parameters and initial value for model variables are given in tables bellow. The 

model is arranged in such way for Simulation purposes. 

dX/dt=r*X*(1-(X+W)/k)+r_1*H-beta*X*W-P_1*X*Y/(s+X)-P_3*X*Z/(s+X)//Susceptible prey 

dW/dt=beta*X*W-t_1*W-d_2*W-P_2*W*Y/(s+W)-P_4*W*Z/(s+W)//Infected prey 

dY/dt=q*P_1*X*Y/(s+X)+q*P_2*W*Y/(s+W)+r_2*H-alpha*Y*Z-d_3*Y//Susceptible predator 
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dZ/dt=q*P_3*X*Z/(s+X)+q*P_4*W*Z/(s+W)-alpha*Y*Z-t_2*Z-d_4*Z//Infected predator 

dH/dt=t_1*W+t_2*Z-d_1*H-r_1*H-r_2*H // both infected populations under treatment 

Table 4. Parameter value used for simulation. 

Name value Description 

r 22.4000 growth rate of susceptible prey 

k 1.0000E03 carrying capacity of susceptible prey 

r_1 1.0000 Recovery rate of 

beta 2.4000 disease transmission rate in prey 

P_1 1.0000 predation coefficient of susceptible prey due to susceptible predator 

s 1.0000 Half saturated rate 

P_3 1.0000 predation coefficient of susceptible prey due to infected predator 

t_1 1.0000 Treatment rate of infected prey 

d_2 1.0000 Death rate of infected prey 

P_2 1.0000 predation coefficient of infected prey due to predators 

P_4 1.0000 Predation rate of infected prey due to infected predator 

q 1.0000 efficiency of predation 

r_2 1.0000 Recovery rate of susceptible predator 

alpha 2.6000 Disease transmission rate in predator 

d_3 1.0000 Death rate of susceptible predator 

t_2 1.0000 Treatment rate of infected predator 

d_4 1.0000 Death rate of infected predator 

d_1 1.0000 Death rate of both infected and infected predator under treatment 

Table 5. Initial Conditions used for model variables. 

Name value Description 

X[t0] 1.2000E04 initial # susceptible prey 

W[t0] 200.0000 initial # infected prey 

H[t0] 1.0000 Initial # under treated prey predator 

Y[t0] 160.0000 initial # susceptible predator 

Z[t0] 180.0000 initial # of infected predator 

 

Figure 2. Infection prey-predator with treatment. 
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Figure 3. Individualplots for W, Z, and H. 

From simulation Figure 2 and Figure 3, it can be conclude that treatment is helpful tool to minimize or eradicate infection. it 

is shown that as treatment rate increase on infected prey-predator, then infected prey-predator population decrease rapidly. This 

shows due to the fact that infected prey-predator population recovering and move to susceptible classes and that Contributes 

the susceptible prey-predator population to rise in number. 
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Figure 4. High infection and predation. 
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Figure 5. Individual plot of W, Y and Z. 

In sample Simulation figure 4 and figure 5 shows that high 

infection and predation results the whole prey-predator 

population decline to a certain level. Therefore it is better to 

implement treatment mechanisms to sustain stability of the 

prey-predator system. 

7. Conclusions and Recommendation 

In this paper, It can be concluded that the formulated 

model is Mathematically meaningful, valid, and biologically 

well posed by proving the boundedness, positivity and 

existence of the solutions of the model. Trivial, Axial, 

Disease-free and endemic Equilibrium points are investigated. 

Moreover, It is observed that in our model trivial equilibrium 

point is always locally asymptotically unstable. Axial 

equilibrium point is locally asymptotically stable if and only 

if the variables satisfy the following three conditions:�i�βk �

�t� + d�� 8 0, �ii� qp�k � d��s + k� 8 0, & �!!!� �p�k �

�t� + d���s + k� 8 0. Treatment is helpful tool to minimize 

or eradicate infection in prey-predator system. Therefore 

Providing treatment in infected prey-predator system creates 

opportunity to recover from illness and the prey-predator 

population can be saved and exist in stable situation. Thus, it 

is recommended to apply treatment on infected prey-predator 

to make the whole prey-predator population safe and 

abundant in nature. One can extend this paper by Assuming 

the predator grows logistically or by adding parameter like 

death rate on the prey or by including other variables like 

vaccination, immigration, migration on prey-predator system, 

and these things can be considered as limitation of this paper. 
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