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Abstract: As a result of technology improvement getting information about products and materials lifetimes under usual 

conditions. Therefore accelerated life testing or partially accelerated life testing usually are used to truncate the tests survives. The 

test items under accelerated life testing run under accelerated conditions and partially life tests run under both accelerated and use 

conditions. The main idea of accelerated life testing that the acceleration element is not unknown or the mathematical model 

relating the lifetime of the unit and the stress is known or can be assumed. In some cases, neither acceleration factor nor life-stress 

relations are not unknown. This paper concerned with studying and discussed the constant–stress partially accelerated life test 

(CPALT) under type I censored (T.I.C) competing risks data. Failure times resulting from T.I.C competing risks data are assumed 

to follow the Extended generalized log logistic (EGLL) distribution because this model is completely flexible to study positive 

data. This distribution is applied in various fields, for example lifetime studies, economics, finance and insurance. The maximum 

likelihood (ML) method is used to estimate the parameters under TIC competing risks data. The simulation algorithm is 

performed to assess the theoretical results of the maximum likelihood estimates based on TIC competing risks data. 

Keywords: Constant Stress Partially Accelerated Life Test, Type I Censored Data, Cot Ending Failure Causes,  

Maximum Likelihood Method 

 

1. Introduction 

In experiments ALT is applied to reduce time and cast. 

There are different methods of acceleration. Among these 

methods, the constant stress in which stress on the units 

remains constant, the progressive stress in which the stress 

applied on the test units increases with time and the step 

stress in which the test conditions change for a given time or 

for a given number of failures, see DS. Bai, SW. [1] 

In PALT the test items are run at both accelerated and 

normal conditions. PALT is suitable when the acceleration 

failure are the mathematical model is unknown, see Abdel-

Hamid and Al-Hussaini [2], Hassan et.al.[3], Hassan et.al.[4], 

Abu-Zinadah and Ahmed [5], Ismail [6], A.A. Ismail, A.A. Al-

babtain [7], Ismail and Al Tamim [8], Ismail and Al Harbi [9], 

Li and Zheng [10] , Zarrin, el al.[11], Fawzy [12], 

The EGLL was first introduced by Lima and Corderio [13]. 

This new model is very flexible for modeling various types 

of data. In this paper, the MLES of the EGLL parameters are 

obtained under constant stress partially accelerated life test. 

The rest of this paper is organized as follows: Competing 

risks schemes and model description are presented in Section 

2. The ML estimators under T.I.C competing risks data is 

illustrated in Section 3. The simulation study is performed to 

assess the theoretical results in Section 4 

2. Competing Risks Plans and Model 

Description 

In Survival study, the items failure might be credit ready to 

more reason simultaneously. Theses “causes” would 

contending for the test unit failure. In the statistical literature, 

this issue is common as those contenting risks pattern. The 

information of competing risks study, the data comprises of a 
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time failure and the related cause of its failure. It is assumed 

that the failure reasons are independent or reliant. In this 

study, we expect the suppressed failure time experiment, as 

proposed by Cox [14], that the times failure are individually 

circulated. where the failure is caused because of many 

reasons of failure, see Crowder [15]. 

Regarding experiment lifetime with i.i.d units n are drawn 

from N with i.i.d. Random variables (RVs) ��, . . . , �� . 

Without loss of generality; accept that there are just two 

reasons of failure. We have 

�� = 	�
 (��
,  ��
) for i = 1, . . . , n, 
where Z�
 , Z�
  indicates the underlying time failure of the � − �ℎ  unit in 1

st
 and 2

nd
 failure reasons, separately. It is 

expected that the underlying time failure Z�
  and Z�
 are not 

dependent, the sets (Z�
 , Z�
 ) are i.i.d. The observed time 

failure is indicated through the RV, = 	�
 (��
,  ��
). 

The reliability function (SF) of the RV T is defined as 

��(�) = P(� > �) = P(� > ��) P(� > ��) = ��(�)��(�), 

Where ��(. ) = 1 − �(. ),  and the SF is the reliability 

function of EGLL appropriation. 

Model Description and Its Assumptions 

In this section, we show the fundamental assumptions for 

the life test of the product in CPALT competing failure of the 

model. Additionally, the procedures of test in CS_PALT 

dependent on T.I.C plans that the competing failures lifetimes 

are expected to be EGLL distribution are clarified. 

The procedure of test in CPALT is recognized as: 

1) Whole n units are split into two sets: 

2) Group1(G.1) consists of 
� = 
(1 − �), (1 − �) is 

sample part units shared to typical circumstances. 

3) Group 2 (G.2) consists of 
� = 
�  residual units are 

exposed to accelerated conditions. 

4) All items in G.1 and G.2 are run at steady stress level 

till the test ends after the time of censoring τ in the case 

of T.I.C is reached. 

5) The lifetimes �
 , � = 1,2, … , 
(1 − �),  of units 

designated in ordinary states are EGLL distribution with 

shape parameter !, " , scale parameter #  and its 

probability density function (pdf) and cumulative 

distribution function (cdf) are given as follows: 

$(�
) = !"#�
%&�(1 + �
%)(&�)&*+,�-./012&�3, �
 , !, 4, " > 0, (1) 

and 

�(�
) = 1 − )&*6,�-./012&�7
,             (2) 

where the observed ordered failure times are �(�) < ···< �(�:) < ; under T.I.C and 
<  is the failed units number at 

ordinary situations. 

6) The lifetimes =>?(>@�,�,...,�A) of units assigned at 

accelerated conditions are a EGLL distribution with 

shape parameter !, "and scale parameter a and its the 

pdf and cdf are given by: 

$,B>1 = !�!"#,!�B>1%&� C1 + ,!�B>1%D(&� )&*EC�-,(FGH10D2&�I, B> , !, 4, " > 0, !� > 1,                      (3) 

And 

�,B>1 = 1 − )&*EC�-,(FGH10D2&�I
,                                                         (4) 

where the observed ordered failure times are B(�) < ···<  B(�*) < ; and 
# is the failed units number in accelerated situations 

under T.I.C. 

Basic Assumption 

1) The lifetimes �
 , � = 1,2, … , 
(1 − �), of units approached at typical conditions are i.i.d RVs 

2) The lifetimes =>?(>@�,�,...,�A) of items designed at accelerated conditions are i.i.d RVs 

3) The lifetimes �
  and =>  are commonly independent. 

3. ML Estimators Based on T.I.C Competing Risks Data 

Assume that the observed estimations of the whole lifetime T of size 
(1 − �) at typical states are �(�), �(�), . . . , �,�(�&A)1, 
and the observed number of the whole lifetime = of size 
� at accelerated situation are B(�), B(�), . . . , B(�A). Let J:
 and J*
 
showed the indicators of the failure are  

J:
 = K 1, �
 > ;0, L�ℎ)MN�O)  � = 1,2, … , 
(1 − �), 
and 

J*> = K 1,  B> > ;0, L�ℎ)MN�O)  � = 1,2, … , 
�, 
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The probability work for T.I.C contending risks of data at when time the reason of failure is known at ordinary 

circumstances as follows: 

P ∝ ∏ S$�(�
)���(�
)TU(V/@�)S$�(�
)���(�
)TU(V/@�)S���(;)���(;)TVW/�AW
@� ,                                     (5) 

where, �
 = �(
), and �� = (1 − �). By substituting (1), (2), (3) and (4) in (5), then 

P�(:
) ∝ X E!�"�#��
%F&�(1 + �
%F)(F&�)&Y*F6,�-./0F12F&�7-*Z6,�-./0Z12Z&�7[IVF\/ E!�"�#��
%Z&�(1
�AW


@�
+ �
%Z)(Z&�)&Y*F6,�-./0F12F&�7-*Z6,�-./0Z12Z&�7[IVZ\/ E)&Y*F6,�-]0F12F&�7-*Z6,�-]0Z12Z&�7[IVW\/

 

Additionally, the T.I.C. likelihood function contending risks information at what time the failure reason of failure is known 

at accelerated conditions is given by 

P(*>) ∝ X ^!�!��"�#�,!��B>1%F&� C1 + ,!��B>1%FD(F&� )&_*FEC�-,(FFGH10FD2F&�I-*ZEC�-,(FZGH10ZD2Z&�I`a
VFbH

^!�!��"�#�,!��B>1%Z&� C1�AW


@�
+ ,!��B>1%ZD(Z&� )&_*FEC�-,(FFGH10FD2F&�I-*ZEC�-,(FZGH10ZD2Z&�I`a

VZbH
6)&c*F+,�-((FF])0F12F&�3-*Z+,�-((FZ])0Z12Z&�3d7VWbH

 

Since the lifetimes of ��, . . . , ��: and B�, . . . , B�* are i.i.d then the whole T.I.C likelihood function competing risks data after 

the failure cause is known at typical and accelerated cases (��;  J:�; . . . , ��AW ;  J:�AW ; B�;  J*�. . . , B�A;  J*�A) is given by 

P
 ∝ P(:
)P�(*>) ∝
∏ E!�"�#��
%F&�(1 + �
%F)(F&�)&Y*F6,�-./0F12F&�7-*Z6,�-./0Z12Z&�7[IVF\/ E!�"�#��
%Z&�(1 +�AW
@�

�
%Z)(Z&�)&Y*F6,�-./0F12F&�7-*Z6,�-./0Z12Z&�7[IVZ\/ E)&Y*F6,�-]0F12F&�7-*Z6,�-]0Z12Z&�7[IVW\/ ∏ ^!�!��"�#�,!��B>1%F&� C1 +�AW
@�

,!��B>1%FD(F&� )&_*FEC�-,(FFGH10FD2F&�I-*ZEC�-,(FZGH10ZD2Z&�I`a
VFbH

^!�!��"�#�,!��B>1%Z&� C1 +
,!��B>1%ZD(Z&� )&_*FEC�-,(FFGH10FD2F&�I-*ZEC�-,(FZGH10ZD2Z&�I`a

VZbH
E)&Y*F6,�-((FF])0F12F&�7-*Z6,�-((FZ])0Z12Z&�7[IVWbH

 (6) 

where, Jf:
 = 1 − J:
  and Jf*> = 1 − J*>. 
The ML assessors !g�, "h �, #i �, !g�, "h �, #i �, !g��and !g�� of the parameters and acceleration factors !�, "�, #�, !�, "�, #�, !�� and !�� 

are the values when boosts the likelihood function. The logarithm of the likelihood function ℓ = ln P
 is given by: 

ℓ ∝ 
�� ln !� + 
�� l
 "� + 
�� ln #� + ("� − 1) ∑ l
�AW
@� J�:
�
 + (!� − 1 ) ∑ l
�AW
@� J�:
(1 + �
%F) − #� ∑ J�:
n(1 + �
%F)(F −�AW
@�1o − #� ∑ J�:
�AW
@� n(1 + �
%Z)(Z − 1o + 
�� ln !� + 
�� ln "� + 
�� ln #� + ("� − 1) ∑ l
�AW
@� J�:
�
 + (!� − 1 ) ∑ l
�AW
@� J�:
(1 +�
%Z) − #� ∑ J�:
n(1 + �
%Z)(Z − 1o − #� ∑ J�:
�AW
@� n(1 + �
%F)(F − 1o�AW
@� . + 
� ln !� + 
� l
 "� + 
� ln #� + ("� −
1) ∑ l
�A>@� J�*>B> + (!� − 1 ) ∑ l
�AW>@� J�*>,1 + B> %F1 − #� ∑ J�*> +,1 + B> %F1(F − 13 − #� ∑ J�*>�A>@� +,1 + B>%Z1(Z − 13 +�AW>@�


� ln !� + 
� ln "� + 
� ln #� + ("� − 1) ∑ l
�AW>@� J�*>B> + (!� − 1 ) ∑ l
�A>@� J�*>,1 + B> %Z1 + − #� ∑ J�*> +,1 +�A>@�
B>%Z1(Z − 13 − #� ∑ J�*>�AW>@� +,1 + B>%F1(F − 13 − Jf*>p#�n(1 + (qr;)%F)(F − 1o + #�n(1 + (qr;)%Z)(Z − 1os.

  (7) 

The first derivatives of the logarithm of the likelihood function (7) concerned to !r , "r , #r , qr, k=1,2, are given by 

tℓ
t(u = �AW

(u + ∑ l
�AW
@� Jr:
(1 + �
%u) − #r ∑ Jr*> +,1 + B>%u1(u3 l
,1 + B>%u1 + �A
(u + ∑ l
�A
@� Jr:
(1 + �
%u) − #r ∑ Jr*> +,1 +�A>@��A>@�

B>%u1(u3 l
,1 + B>%u1 − Jf*>p#rn(1 + (qr;)%u)(u − 1o ln(1 + (qr;)%u)s,               (8) 
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vℓv"r = 
��"r + w l

�AW


@�
Jr:
�
 + (!r − 1 ) w l


�AW


@�
Jr:
(1 + �
%u)l
�
 − #r w Jr:
l
�


�AW


@�
n(1 + �
%u)(u − 1o 

�A
%u + ∑ l
�AW
@� Jr:
�
 + (!r − 1 ) ∑ l
�AW
@� Jr:
(1 + �
%u)l
�
 − #r ∑ Jr:
l
�
�AW
@� n(1 + �
%u)(u − 1o − Jf*>p#rn(1 + (qr;)%u)(u − 1os,  (9) 

tℓ
t*u = �AW

*u + ∑ Jr:
�AW
@� n(1 + �
%u)(u − 1o + �A
*u − ∑ Jr:
l
�
�AW
@� n(1 + �
%u)(u − 1o − Jf*>n(1 + (qr;)%u)(u − 1o,   (10) 

and 

tℓ
txu = Jf*>"rp#rn(1 + (qr;)%u)(u − 1os(qr;)%u&�. (11) 

Setting Eqs. (8)- (11) by zeros. The arrangement of these 

nonlinear conditions can't be solved analytically. Thus, 

numerical solution via iterative techniques is applied to 

obtain the ML estimators. 

4. Simulation Study 

A simulation study is used to assess the estimates 

performance. The assessments of the acceleration factor (q�, q�)  and population parameters !�, "�, #�, !�, "�, #�  are 

evaluated regarding the mean squared errors (MSEs) and 

biases. The numerical technique is approached as follows: 

1) A random sample size 
� = 
(1 − �), where π =0.4 is 

the ratio and n is the whole sample size, is generated 

under typical circumstances. So, samples are generated 

from y� ∼  {|PP(
�, !�, "�, #�)  and y� ∼ {|PP(
�, !�, "�, #�) . Taking into account two 

generated samples generate new samples �� =�(�), �(�), �(}), . . . . , �(��) where 

� =  	�
 (y�, y�). 
2) A random sample size 
� =  
�  is deduced under 

accelerated cases. Thus, the two samples from y� ∼ {|PP(
�, !� , "�, #�)  and y� ∼  {|PP(
�, !�, "�, #�)   are 

generated. The two generated samples generate new 

samples 

3) = = B(�), B(�), B(}), . . . . , B(��) where 

= =  	�
 (y�, y�). 
4) In T.I.C, let ; = 1,1.5,2 for sample sizes 30, 60, 100, 

200 and 500, for some selected the unknown parameters 

and factor of accelerated, this process is iterated 1000 

times at various estimations of population !� =1.5, "� = 2, #� = 2.5, !� = 3, "� = 4, #� = 2 , q� =1.5, q� = 3 
5) The average estimations of biases (Abias) and MSEs 

are processed. 

The mathematical results are reported in Table 1. The    

outcomes can be found as follows: 

1) The Abias and MSEs decrease as n increase under T.I.C 

data. 

2) It is noticed that the Abias and MSEs decrease, 

censoring time ; decrease. 

3) Clearly, the acceleration of the experiment is useful to 

get outcomes and data quickly, yet the most 

consequences of normal condition are more exact that 

speeding up condition. 

Table 1. Abias and MSEs of MLE based on T.I.C at ; = 1, 1.5, 2 and π =0.4. 

n MLE 
� = �  � = �. �  � = �  

Abias MSE Abias MSE Abias MSE 

30 

!g�  0.0923 0.0101 0.7760 0.0073 0.0456 0.0089 "��  0.0853 0.0088 0.0706 0.0062 0.0686 0.0079 #��  0.1894 0.0375 0.1747 0.0315 0.1427 0.0330 qg�  0.1174 0.0154 0.1027 0.0116 0.1005 0.0134 !g�  0.1836 0.0353 0.1689 0.0298 0.1669 0.0310 "��  0.1642 0.0286 0.1495 0.0236 0.1475 0.0250 #��  0.1507 0.0243 0.1360 0.0193 0.1340 0.0212 qg�  0.1054 0.0127 0.0907 0.0005 0.0887 0.0111 

60 

!g�  0.0462 0.0037 0.0315 0.0022 0.0295 0.0022 "��  0.0426 0.0034 0.0279 0.0020 0.0258 0.0019 #��  0.0532 0.0044 0.0385 0.0027 0.0365 0.0025 qg�  0.0476 0.0038 0.0329 0.0023 0.0309 0.0021 !g�  0.0612 0.0053 0.0465 0.0034 0.0445 0.0020 "��  0.0547 0.0046 0.0400 0.0028 0.0380 0.0027 #��  0.0754 0.0073 0.0607 0.0049 0.0587 0.0036 qg�  0.0624 0.0034 0.0270 0.0019 0.0250 0.0017 

100 

!g�  0.0131 0.0018 0.0016 0.0012 0.0036 0.0032 "��  0.0135 0.0019 0.0012 0.0013 0.0032 0.0023 #��  0.0163 0.0019 0.0015 0.0012 0.0004 0.0032 qg�  0.0104 0.0017 0.0043 0.0013 0.0063 0.0025 !g�  0.0046 0.0016 0.0101 0.0013 0.0121 0.0034 "��  0.0099 0.0016 0.0048 0.00125 0.0068 0.0033 #��  0.0165 0.0019 0.0018 0.00135 0.0021 0.0031 qg�  0.0111 0.0017 0.0036 0.00124 0.0056 0.0034 
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n MLE 
� = �  � = �. �  � = �  

Abias MSE Abias MSE Abias MSE 

200 

!g�  0.0065 0.00004 0.0052 2.74 x e-5 0.00393 1.54 x e-5 "��  0.0079 6.65 x e-5 0.0064 2.92 x e-5 0.0041 1.64 x e-5 #��  0.0081 6.64 x e-5 0.0065 4.25 x e-5 0.0049 2.39 x e-5 qg�  0.0052 2.7 x e-5 0.0042 1.73 x e-5 0.0031 9.37 x e-6 !g�  0.0023 5 x e-6 0.0018 3.38 x e-6 0.0014 1.90 x e-6 "��  0.0049 2.45 x e-5 0.0040 1.57 x e-5 0.0030 8.82 x e-6 #��  0.0083 6.80 x e-5 0.0066 4.36 x e-5 0.0049 2.45 x e-5 qg�  0.0055 3.08 x e-5 0.0044 1.97 x e-5 0.0033 1.11 x e-5 

Table 1. Continued. 

n MLE 
Abias MSE Abias 

Abias MSE Abias MSE Abias MSE 

500 

!g�  0.0016 2.64 x e-6 0.00032 1.54 x e-6 0.00028 8.09 x e-8 "��  0.0019 3.90 x e-6 0.00039 3.15 x e-6 3.56 x e-4 1.17 x e-7 #��  0.0020 4.10 x e-6 0.00040 3.83 x e-6 2.49 x e-4 1.26 x e-7 qg�  0.0013 1.69 x e-6 0.00026 1.21 x e-6 0.00227 5.18 x e-8 !g�  0.0006 3.31 x e-7 0.00012 2.27 x e-7 1.01 x e-4 1.16 x e-8 "��  0.0013 1.50 x e-6 0.00025 1.51 x e-6 2.05 x e-4 4.60 x e-8 #��  0.0021 4.31 x e-6 0.00045 3.73 x e-6 3.13 x e-4 1.32 x e-7 qg�  0.0014 1.89 x e-6 0.00025 1.89 x e-6 2.41 x e-5 5.79 x e-8 

 

5. Conclusion 

In this study, the CPALT under T.I.C data is discussed 

assuming that failure times are EGLL distribution. The ML 

method is applied to estimate the unknown parameters under 

TIC competing risks. To assess the theoretical results of the ML 

method for CPALT based on T.I.C data, the simulation 

algorithm is performed. It is noted that the Abias and MSEs 

decrease as n increase under T.I.C data and censoring time ; 

decrease. The acceleration of the experiment is valuable helpful 

to get outcomes and data quickly, yet the most consequences of 

normal condition are more exact that speeding up condition. 
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