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Abstract: The present study uses penalized splines (p- spline) to estimate the functional relationship between the survey 

variable and the auxiliary variable in a complex survey design; where a population divided into clusters is in turn subdivided into 

strata. This study has considered a case of auxiliary information present at two levels; at both cluster and element levels. The study 

further applied model calibration technique by penalty function to estimate the population total. The calibration problems at both 

levels have been treated as optimization problems and solved using penalty functions to derive the estimators for this study. The 

reasoning behind model calibration is that if the calibration constraints are satisfied by the auxiliary variable, the study expects 

that the variable of interest’s fitted values meets such constraints. This study runs a Monte Carlo simulation to assess the finite 

sample performance of the penalized spline model calibrated estimator under complex survey data. Simulation studies were 

conducted to compare the efficiency of p-spline model calibrated estimator with Horvitz Thompson estimator (HT) by mean 

squared error (MSE) criterion. This study shows that the p-spline model-based estimator is generally more efficient than the HT in 

terms of the mean squared error. The results have also shown that the estimator obtained is unbiased, consistent and very robust 

because it does not fail if the model is misspecified for the data. 

Keywords: Penalized Spline, Nonparametric Model, Auxilliary Information and Optimization Problem 

 

1. Introduction 

In recent years, Nonparametric estimation methods have 

gained considerable attention due to their flexibility. One of 

these methods is the penalized spline estimation. This 

method requires knowing the number and locations of knots, 

the degree of the polynomial, and the degrees of freedom. 

The degrees of freedom are known as the equivalent number 

of parameters. There are practical rules in the existing 

literature to determine the degree of the polynomial and the 

number and locations of knots. The degrees of freedom are 

established according to the user’s experience. 

Splines can be classified as regression splines, cubic 

splines, B-splines, penalized-splines, natural splines, thin-

plate splines, and smoothing splines, according to De Boor 

(2001), [3]. Nonparametric regression using splines has 

undergone extensive development in recent years. Smoothing 

splines (Eubank 1988; Wahba 1990) [6, 13] use a knot at 

each distinct value except the boundary values of the X-

variable and control overfitting by applying a rough-ness 

penalty. Penalized splines (p-splines), formally introduced by 

Eilers and Marx (1996), [5], are in general computationally 

inexpensive and allow flexible knot selection yet yield sound 

performance. P-splines are also easy to implement: there is a 

close relationship which implies that they can be fitted using 

widely-available statistical software such as R software and 

S-Plus (Pinheiro and Bates, 2000), [9] function lme (). 

The Horvitz-Thompson (HT) estimator (Horvitz and 

Thompson 1952), [7] is a standard design-unbiased estimator 

of population total and weights cases by the inverse of their 
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inclusion probabilities (Zhen and little 2003), [15]. This 

estimator was used in this study as a baseline comparison 

with p-spline model calibrated estimator. 

The concept of auxiliary variables in the present 

scholarship in statistics denotes independent or predictor 

variables in a regression analysis. As the name suggests, the 

variables offer additional information and may be used to 

improve the estimation of population parameters. Breidt and 

Opsomer (2000), [1] noted that micro-econometric research 

is frequently performed using data collected by surveys, 

which may contain auxiliary information for every unit of the 

population of interest. As can be expected, many of these 

surveys use complex sampling plans to reduce costs and 

increase the estimation efficiency for subgroups of the 

population. Complex sampling designs result in unequal 

sampling probabilities for the units in the sample and create 

data with correlations between observations, violating the 

assumption that the data are independently and identically 

distributed (iid) (Sayed, 2010), [12]. This means that the 

number of population units represented by a given sample 

unit is not uniform across all of the units in the sample. 

Although the word complex survey has been used mostly by 

researchers to refer to different combinations of sampling 

plans, however, in this research, complex survey refers to a 

mixture of both stratified and cluster sampling methods 

(Clair, 2016), [2]. 

In this study, Nthiwa Janiffer Mwende, et al. (2020), [8] 

work which considered auxiliary information at cluster level 

only is extended. This study extends this work to consider 

auxiliary information available at both the element and 

cluster levels. The extension is by treating the two levels of 

calibration problems in a cluster- Strata sampling, as 

constrained nonlinear optimization problems which is then 

converted into unconstrained optimization problems. The 

resulting problems were then solved using the penalty 

function method to obtain the weights at both cluster and 

cluster- strata element levels assigned to sample observations 

from some chi-square distance measures. 

This study considered the generalized calibration procedure 

using model calibration as proposed by Wu and sitter (2001), 

[14]. They considered generalized linear and nonparametric 

regression models for the super population model ψ 	given in 

the equation below: 

( )i i iy h x ε= +                                        (1) 

where ������
�  is a sequence of independent and identically 

distributed random variables with 	(��) = 0 and 	(��
�) = �� 

and ℎ(��) is a smooth function that can be estimated using 

nonparametric methods like kernel, neural network, and 

penalized splines. Given n pair of sample observations 
(��, ��),… , (��, ��) from a population of size �, of interest, 

is the estimator ℎ�(�)  of ℎ(�)  = ( / )E y xψ . For model 

calibration, calibration is performed to the population mean 

of the fitted values ℎ��(��) (Wu and sitter, 2001), [14]. The 

study considers a model calibration estimator for the 

population total tY  given below. 

∑
∈

=
ai

ii ywŶ                                     (2) 

Where a is a set of sampled units under a general sampling 

design while 
,

iw s  are design weights such that for a given 

metric, are as close as possible in an average sense to the 

�� 	=
�

��
. These weights are obtained by minimizing a given 

distance measure between the
,

iw s and 
,

iz s subject to some 

constraints. The chi-squared distance measure to be 

minimized is as provided in the equation below 

( )
∑
∈

−
=

ai ii

ii

a
zq

zw
2

δ                                (3) 

where iq ’s are known positive constants uncorrelated with 

the iz ’s, (Deville and Sarndal, 1992), [4] subject to two 

constraints equation given below 










=

=

∑∑

∑

=∈

∈

N

i

i

ai

ii

ai

i

hhw

Nw

1

ˆˆ
                           (4) 

where ( )ˆ ˆ
i i ih h x= . 

Model calibration method is intended to provide good 

efficiency if the model is correctly specified but maintains 

desirable properties like design consistency if the model is 

misspecified (Sahar, 2012), [11]. The simulations in this 

study suggest that for estimation of the finite population total, 

p-spline model-based predictive estimators are, in general, 

more efficient than the HT estimator. In situations that favor 

the HT estimator, the nonparametric model-based estimators 

are only slightly less efficient. 

2. Fitting of Missing Values 

In this section, the study considered fitting missing values 

for a population divided into clusters which are then 

subdivided into strata. This section considered a case where 

there is auxiliary information known at both cluster and 

cluster element Levels. The study defined UxxxQ ,...,, 21=  

as a population of auxiliary variables of size U  with 

auxiliary variable; ix being known at 
thi  cluster and auxiliary 

variable; ijkx being known at strata elements level. This 

study considered a population of clusters G to be partitioned 

into C clusters, each of size , 1,2,...,iM i C= . 

Further, each cluster contains iL strata each of size

, 1,2,...,j iN j L= . Let also ijky be 
thk  observation in the 
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sample from the 
thj  stratum of 

thi cluster and ix be the 

corresponding auxiliary variable at cluster level. At stage 

one, a probability sample c of size im of clusters is drawn 

from C according to a fixed design 1( )P • (by simple random 

sampling), where 1( )P c is the probability of drawing the 

sample c of size im  from C. The first order cluster inclusion 

probabilities, 1( )P •  is 1( ) ( )i

i c

pr i c P c

ε
π ε= =∑  and

, 1

,

( , ) ( )i t

i t c

pr i t c P c

ε
π ε= =∑ . The first and the second order 

probabilities are the probability of including cluster i  in the 

sample and the probability of including clusters i  and t  in 

the sample respectively. At stage two, for every sampled 

cluster �	 ∈ �, the study chose a sample ib  of elements of size 

, 1,2,...,in i c= , where 1 2 ...
ii i i iLn n n n= + + + . Given that 

1 2, ,...,
ii i iLn n n  are sample sizes of the sample chosen from iL

strata by proportional allocation with inclusion probabilities 

/ / ( , / )k j i ipr k j r i cπ ε ε=  and , / / ( , / )k p j i ipr k p r i cπ ε ε= . In 

this case, the first and second order probabilities are the 

probability of including element k  in the sample ib of the 

thi cluster and the probability that unit k  and p  are both 

included in the sample ib respectively. This study let; 

�� = ℎ(��) +	��;	 1,2,...,i C=                         (5) 

to be the ith cluster total, where ˆ( )ih x  is a smooth function 

of x . Let also ˆ ˆ
c i i c

t t
ε

 =    be the im  dimension vector of 

ˆ 'it s which is obtained in the sample of clusters. 

This study modelled ˆ( )ih x in equation (5) by way of penalized 

spline and performed model calibration on ˆ( )ih x . Since some 

information is available at the element level such that for each 

element in the jth strata of the ith cluster, a nonparametric variable

ijkx is available then the first step was to obtain the nonparametric 

fit for elements; 
ijkxh using the auxiliary variable ijkx  at element 

level nonparametrically before an estimate of cluster total through 

stratification for the ith cluster total was found. 

Suppose that not all element values of the variable of 

interest in a given cluster- strata are available and have to be 

imputed. This study derived a model calibrated estimator of 

element within cluster as follows; 

ˆ( ) ( )ijk ijkE y h x=                                 (6) 

where ˆ( )ijkh x and ijkx  are defined for every element k in the 

jth stratum of ith cluster. For simplicity, this study uses ˆ
ijkh  

for ˆ( )ijkh x . 

Firstly, when penalized splines are used to fit missing 

values, the present study defined the nonparametric sample 

fit for elements within clusters, 
1
( )ijkE hψ  at ijkx due Breidt 

and Opsomer, (2000) [1] as 

ˆ
ijk

T
x psijk ijkh J y=                               (7) 

where 
T
psijkJ is defined by 

1( )T T T
psijk rijk Ob b Ob Ob bJ X X W X A X Wα −= +              (8) 

In which a matrix OX  is considered with rows 

( ) ( ){ }11, ,..., , ,...,
q qqT

Oijk ijk ijk ijk lijkX x x x k x k
+ +

= − −        (9) 

for i Gε , q is the degree of the spline, and the lk  are the 

knots, while 1 1( )x k x k+− = −  if 1x k> and 0 if 1x k≤ . Further, 

ObX  in equation 8 is the sub matrix of 0X  which consists of 

the rows 
T
OijkX  for which the cluster element ik bε ,  ! =

"�#$�0, … , 0, &, … , &�  with q + 1 zeros on the diagonal 

followed by l  penalty constants α. 

The study considered the diagonal matrix of inverse 

inclusion probabilities as; 

1
,

ijk

W diag i G
π
  = ∈  
  

and its sample submatrix in 

equation 8 given as; 
1

,b i
ijk

W diag k b
π
  = ∈  
  

. As a result, 

the model calibrated estimator for the sampled cluster total 

was defined by; 

ˆ ˆ
i ijk ijki C

t w y
ε

=∑ .                            (10) 

The optimal weights; ijkw  in equation (10) was obtained 

by the penalty function method. They were obtained by 

minimizing the chi square distance below as discussed by 

Deville and Sarndal (1992), [4]. 

( )2

i

ijk ijk

c
ijk ijkk b

w z

q z
δ

∈

−
=∑ .                         (11) 

subject to 

i

ijk i

k b

w M

ε
=∑  

and 

1 1

ˆ ˆ
i in M

ijk ijk ijk

k i

w h h

= =

=∑ ∑ .                     (12) 
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where 
1

ijk
ijk

z
π

= is the inverse of inclusion probability and 

ijkq  are some known positive constants, uncorrelated with 

ijkz . This study followed same optimization procedure by Rao, 

1984, [10] and considered an optimization problem of the form 

Minimize 

( )2

i

ijk ijk

c
ijk ijkk b

w z

q z
δ

∈

−
=∑  subject to 
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n
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hhwwl

Mwwl

.              (13) 

where ˆ
ijkh  is a nonparametric fit of the missing value ijky . 

The study then constructed an unconstrained problem as 

follows according to by Rao, 1984, [10]. 

( ) 2

1

2
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2
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
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−+
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
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−+
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M
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τ .                      (14) 

Differentiating equation (14) partially with respect to ijkw we get 
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2)ˆ,,(τ .                      (15) 

Equating equation (15) to zero and solving for ijkw  the study obtained; 

( )
1 1

2

ˆ ˆ ˆ ˆ( ) 1 1

ˆ1 ( ) (( ) 1)

i in M

ljk b ijk ljk ijp ijk ijp ijk ijp

k p
p k

ijk

b ijk ijk ijk

z H r q z w h h h h

w
H r h q z

= =
≠

 
 

   − + − −      
 =

+ +

∑ ∑
.                                           (16) 

Thus, a nonparametric estimator of the cluster total is given as; 

( ) ( )
1 1

2 2
1 1

ˆ ˆ ˆ ˆ( ) 1 1

ˆ ˆ
ˆ ˆ1 ( ) (( ) 1) 1 ( ) (( ) 1)

i i
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n M
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y z
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= =
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   + − −      
 = = −

+ + + +

∑ ∑

∑ ∑ ∑
.     (17) 

Secondly, the nonparametric fit of the cluster totals based 

on penalized splines in this study was defined as; 

ˆ ˆ
i

T
t psi ch J t= .                                    (18) 

where 
T
psiJ is as defined by Nthiwa Janiffer Mwende et al. 

(2020), [8] as 

1( )T T T
psi ri rc c rc rc cJ X X W X A X Wα −= +  

in which a matrix rX  has the rows 

( ) ( ){ }11, ,..., , ,...,
q qT q

ri i i i i lX x x x k x k+ += − −            (19) 

for i Gε , further, rcX  is the sub matrix of rX  which 

consists of the rows 
T
riX  for which the cluster i cε , while the 

diagonal matrix of inverse inclusion probabilities was 

defined the same way as Nthiwa Janiffer Mwende et al. 

(2020), [8] as; 
1

,
i

W diag i G
π
  = ∈  
  

and its sample sub 

matrix defined as 
1

,c
i

W diag i c
π
  = ∈  
  

. 

The study then proposed a nonparametric penalized spline 

model calibrated population total estimator as; 

ˆˆ
PS i ii c

y w t
ε

=∑ .                               (20) 

The weight iw in this equation (20) was obtained by 

minimizing the chi square distance measure given as; 

( )
∑
∈

−
=

ci ii

ii

zq

zw
2

δ                               (21) 
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subject to 

1 1
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= =
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∑

∑ ∑
                             (22) 

where 
1

i
i

z
π

= and iq  are some known positive constants 

uncorrelated with iz . This, therefore, gave an optimization 

problem of; 

minimize 

( )
∑
∈

−
=

ci ii

ii

zq

zw
2

δ  

subject to 

1

1

2

1 1

( ) 0

ˆ ˆ( ) 0
i i

c
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i

c C

i t t

i i

S w w C

S w w h h

=

= =


= − =


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

∑

∑ ∑
                      (23) 

which gave a penalty function of the form; 
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Following same penalty procedure as in estimating the optimal weights ijkw  by penalty method above, the weight iw

becomes; 

( )
1 1

2

ˆ ˆ ˆ ˆ( ) 1 1

ˆ1 ( ) (( ) 1)
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c C
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+ +

∑ ∑
.                                                         (25) 

The weighted nonparametric estimator of population total based on p-splines when information is available at both cluster 

and element level as defined in equation (20) was obtained as; 
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    (26) 

3. Penalty Function Method of Obtaining 

the Weights 

To obtain the within cluster weights, ( )1,2,...,ijk iW k n= =

and cluster level weights ( ), 1,2,...,iw i c= , this study applied 

iterative procedure. Firstly, to obtain the within cluster 

weights, ( )1,2,...,ijk iW k n= =  the study solved the penalty 

function in equation (14) as an unconstrained minimization 

problem. The research in this case started with some initial 

guess for ijkw and br  then iteratively improved on the initial 

values until optimal values are obtained. The present study, 

therefore, followed the Newton method of unconstrained 

optimization, according to [8] as follows; 

If ( )1 2, ,...,
ii ij ij ijnW w w w= is let to be the set of the 

weights, of interest was to obtain 
*

iW such that 

'
* '

1( ) ( , ),..., '( , , ) 0
ii ij b ijn bW w r w rτ τ Γ = =  .               (27) 

Further if iuW  is let to be initial estimate of 
*

iW so that 

*
i iu iW W T= + . The Taylor’s series expansion of 

*( )iWΓ gives 

*( ) ( ) ( ) ...
iui iu i i W iW W T W J TΓ = Γ + = Γ + + .           (28) 

By neglecting the higher-order terms in the above equation 

(28) and setting
*( ) 0WΓ = the study had 

( ) 0
iuiu w iw J TΓ + =                      (29) 

where 
iuwJ is a in by in matrix of second derivatives of the 

penalty function equation (15) evaluated at iuW . Let also i

and j  be the row and column counters respectively with

(1,2,..., )ii n= rows with (1,2,..., )ij n= columns. The matrix 
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iw uJ  has elements 

( )22 ˆ2 ( ) ( ) 1b ijk
ijk ijk

H r h
q z

+ + in the main diagonal and 

elements ( )ˆ ˆ2 ( ) 1b ijk ijpH r h h +  elsewhere. 

If 
uiwJ is a nonsingular matrix, then, from the set of linear 

equations (29) we have for vector T 

1 ( )
uii w iuT J w−= Γ .                            (30) 

The following iterative procedure is used to find the 

improved approximations of 
*

iW  

1
1 ( )

ii i i i w iW W T W J W−
+ = + = − Γ .                (31) 

The sequence of the points 1 2 ( 1), ,...,ij ij ij uW W W + eventually 

converges to the actual solution
*

iW . Now, if we let 
*

ibW be 

the minimum of 
*

iW  obtained for a particular penalty, br  the 

study obtained a sequence of minimum points 
* * *

1 2 ( 1), ,...,ij ij ij bW W W +  for the penalties 1 2 1, ..., br r r + until 

* *
( 1)ib ij bW W += or 1

ˆ ˆ( , , ) ( , , )ijk b ijk ijk b ijkw r h w r hτ τ += for some 

specified accuracy level. The accuracy level may for example 

be, to certain decimal points or significance level. In 

addition, the penalty values may be set such that the starting 

point 1 0r > and 1b br sr+ = , where 1s < , ( )bH r → ∞ as 

0br → . 

This study applied iterative procedure to obtain the cluster 

level weights ( ), 1,2,...,iw i c= . The penalty function in 

equation (24) was solved as an unconstrained minimization 

problem in a similar manner as within cluster weights; ijkW  

discussed in this section. 

4. Empirical Analysis and Discussions 

In the simulation study, a population of size 10,000 

(200*50=10,000) was simulated from a population structure 

containing 200 clusters each of size 50. Each cluster had 5 

strata of size 10 each. At stage one 10, 20, 30,…, 190 clusters 

were sampled from the 200 clusters by simple random 

sampling while at stage two, 5 elements where drawn from 

each stratum by proportional allocation. This gave sample of 

25 elements from each of the sampled clusters. 10 

replications per each sample size were generated. For 

penalized spline method, the number of knots and the Spline 

penalty were optimally generated. 

Using R program, a population of independent and 

identically distributed variable x was simulated using 

uniform (0, 1). This study used penalized spline equation 

(18) to fit cluster totals and equation (7) to fit for elements 

within a cluster. Using the auxiliary variable x, five 

populations for the dependent random variable for cluster 

element, and cluster total; it  were generated with the five 

functions as: 

Linear function (Lin); 3 6it x= +  

Quadratic function (Qd); ( )2
20 6it x= +  

Exponential function (Exp); ( )20 exp 40it x= −  

Cycle 4 function (C4); 0.5 sin(8 )it xπ= −  

Cycle 2 function (C2); 0.5 sin(2 )it xπ= −  

where ti is the ith cluster total and ��  is cluster auxiliary 

variable known at the cluster level. The s 
thk unit in 

thj  

stratum of 
thi cluster was given by; 

��'( =
)�

*�+,)-.	,�/-
+ 01121	�013(0�)/√�678�01	8��0.     (32) 

This study differentiated the five strata from each other by 

the following errors; 

0� = 179�:(−0.001, +0.001)  for stratum 1, 0� =
179�:(−0.002, +0.002) for stratum 2, 

0? = 179�:(−0.003, +0.003)  for stratum 3, 0A =
179�:(−0.004, +0.004)  for stratum 4 and 0C =
179�:(−0.005, +0.005) for stratum 5. 

On the other hand, the respective kth auxiliary variable in 

the jth stratum of ith cluster was given as; 

( )3

6

ijk

ijk j

y
x e

−
= +  for linear               (33) 

20

6

ijk

ijk j

y
x e

−
= +  for quadratic               (34) 

(log(20 ))40ijk ijk jx y e= − +  for exponential        (35) 

( )1sin 0.5

8

ijk

ijk j

y
x e

− −
= +  for cycle 4           (36) 

( )1sin 0.5

2

ijk

ijk j

y
x e

− −
= +  for cycle 2.               (37) 

This study reports on the performance penalized spline 

model calibrated estimator and its efficiency in comparison 

with Horvitz Thompson estimator. The performance of the 

nonparametric estimator; ˆ
PSy  was evaluated using its 

relative bias RB and relative efficiency RE. The relative bias 

was defined as 

1

( )

*

AT

R

PS

r
B

AT

y Y

R
R Y

=

−
=
∑

                             (38) 

where, ATY is the actual total and R is the replicate number 

of samples. The relative efficiency was defined as 
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( )

( )

PS
E

HT

MSE y
R

MSE y
= .                          (39) 

Large values of relative efficiencies represent higher 

efficiency for the design estimator HTy over the estimator 

ˆ
PSy  and vice versa. The ˆ

HTy estimator was defined as 

ˆ
HT i iy z t=∑  where iz is the inverse of the inclusion 

probability given by
C

c
iz =  for class total and

cluster size

sample size
ijkz =  for cluster element. The estimator ˆ

HTy  

was used as the baseline comparison. 

4.1. Normality Test 

A One-sample Kolmogorov-Smirnov test was carried out 

in this study to test for normality of the nonparametric 

estimators; ˆ
PSy  and the design estimator; Horvitz Thompson 

estimator; ˆ
HTy . The p values at α = 0.05 for the five 

population mean functions obtained are as in table 1 below. A 

p-value greater than the set α = 0.05 significance level means 

normality is established. The results show that at α = 0.05 the 

proposed estimators are normal for all the five functions. 

Table 1. Normality test. 

Estimator ˆ PSy
 

ˆHTy
 

Linear 0.9928 0.8869 
Quadratic 0.3763 0.3934 

Exponential 0.7678 0.6876 

Cycle 4 0.8850 0.5584 
Cycle 2 0.9920 0.4319 

4.2. Results for Population Total Estimates 

The results in tables 2, 3, 4, 5 and 6 below shows the 

actual total and the estimates of the penalized splines and the 

Horvitz Thompson for the respective mean functions with 

sample sizes; 50, 100 and 150. From the results the estimator

ˆ
PSy  are seen to give estimates that are close the actual total 

and also to those of Horvitz Thompson design estimator for 

all the 5 population functions. 

Table 2. Linear Population total estimates for samples of sizes, 20, 50, 100 and 150. 

Replication 

Number 
1 2 3 4 5 6 7 8 9 10 

ATy  
Sample size 

50/100/150 4543.206 4543.206 4543.206 4543.206 4543.206 4543.206 4543.206 4543.206 4543.206 4543.206 

ˆ PSy  

50 4550.709 4508.628 4568.743 4598.951 4526.772 4580.126 4506.070 4555.463 4486.108 4551.931 

100 4525.000 4568.034 4568.753 4515.870 4568.810 4531.189 4563.055 4615.942 4512.589 4568.554 

150 4537.296 4537.509 4522.132 4561.317 4515.272 4546.944 4528.760 4560.889 4535.451 4521.857 

ˆHTy  

50 4543.147 4505.097 4559.542 4598.436 4531.062 4576.261 4503.652 4551.989 4488.678 4544.956 

100 4522.916 4566.846 4561.118 4516.681 4561.496 4532.834 4568.969 4620.047 4520.402 4565.650 

150 4536.349 4539.143 4518.782 4563.124 4516.328 4540.459 4526.952 4556.363 4532.178 4525.400 

Table 3. Quadratic Population total estimates for samples of sizes, 20, 50, 100 and 150. 

Replication 

Number 
1 2 3 4 5 6 7 8 9 10 

ATy  
Sample size 

50/100/150 58508.64 58508.64 58508.64 58508.64 58508.64 58508.64 58508.64 58508.64 58508.64 58508.64 

ˆ PSy  

50 59832.17 58626.97 55916.10 59068.46 60239.68 61313.31 56243.05 56767.31 58457.40 55972.48 

100 59208.13 59121.51 58549.64 58667.37 58077.49 58327.13 58899.17 58961.40 59057.99 58351.96 

150 58930.17 58508.48 58202.29 58577.28 58844.61 58348.84 58376.42 58062.99 57828.53 58361.61 

ˆHTy  

50 59835.06 58622.55 55912.85 59073.66 60238.51 61314.53 56252.56 56768.40 58452.97 55964.32 

100 59208.76 59120.87 58549.63 58665.68 58075.85 58331.41 58893.50 58961.65 59061.60 58348.58 

150 58932.61 58505.37 58205.57 58576.88 58851.44 58347.17 58379.05 58063.35 57824.62 58364.26 

Table 4. Exponential Population total estimates for samples of sizes, 20, 50, 100 and 150. 

Replication 

Number 
1 2 3 4 5 6 7 8 9 10 

ATy  
Sample size 

50/100/150 3794.735 3794.735 3794.735 3794.735 3794.735 3794.735 3794.735 3794.735 3794.735 3794.735 

ˆ PSy  

50 3799.913 3800.427 3800.963 3792.627 3798.025 3795.023 3787.908 3790.535 3807.945 3783.372 

100 3790.318 3794.567 3790.789 3791.142 3794.270 3795.132 3793.077 3795.497 3797.233 3794.940 

150 3794.733 3793.256 3790.879 3795.593 3790.908 3796.495 3799.995 3792.718 3794.792 3795.983 

ˆHTy  

50 3800.172 3800.242 3800.665 3792.678 3797.854 3795.050 3787.943 3790.483 3807.787 3783.129 

100 3790.028 3794.767 3790.476 3791.191 3794.124 3795.143 3793.297 3795.539 3797.097 3794.861 

150 3794.631 3793.194 3790.718 3795.681 3790.801 3796.415 3800.001 3792.819 3794.634 3795.881 
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Table 5. Cycle 4 population total estimates for samples of sizes, 20, 50, 100 and 150. 

Replication Number 1 2 3 4 5 

ATy  
Sample size 

50/100/150 98.12195 98.12195 98.12195 98.12195 98.12195 

ˆ PSy  

50 106.74650 132.50628 119.94744 89.20880 85.34613 

100 96.41683 90.02801 97.57377 100.66343 94.51954 

150 99.74723 90.42254 93.29842 102.81139 104.91942 

ˆHTy  

50 113.48154 131.49654 125.62301 95.99730 79.22657 

100 94.70033 92.00542 99.25881 102.30048 94.31615 

150 97.77412 91.93835 93.09909 101.91398 102.26683 

Table 5. Continued. 

Replication Number 6 7 8 9 10 

ATy  
Sample size 

50/100/150 98.12195 98.12195 98.12195 98.12195 98.12195 

ˆ PSy  

50 95.97287 69.00133 137.85757 91.38317 94.34510 

100 109.77530 85.37745 96.69058 104.97689 93.86149 

150 97.10018 98.32416 87.04543 92.83903 98.93072 

ˆHTy  

50 92.69908 68.07357 142.53958 92.80498 88.05275 

100 110.22664 86.45460 95.15238 102.69284 93.62301 

150 99.12175 100.96804 86.27175 95.20490 100.40792 

Table 6. Cycle 2 population total estimates for samples of sizes, 20, 50, 100 and 150. 

Replication 

Number 
1 2 3 4 5 6 7 8 9 10 

ATy  
Sample size 

50/100/150 116.4859 116.4859 116.4859 116.4859 116.4859 116.4859 116.4859 116.4859 116.4859 116.4859 

ˆ PSy  

50 92.01059 104.7750 113.7534 99.91309 84.01602 129.1396 141.9112 132.7674 123.5790 154.1871 

100 114.2216 114.2180 107.6319 121.8142 131.3348 121.3722 115.1419 100.68917 122.5620 112.1085 

150 114.7727 118.6039 120.1997 110.1363 112.3717 123.1632 122.7303 111.1371 120.6737 111.0792 

ˆHTy  

50 92.26469 104.9711 110.4062 100.62389 85.96008 138.7731 142.7816 116.2985 119.2736 148.2210 

100 109.9282 118.0110 111.7657 117.6613 129.6345 118.8748 116.8948 99.04232 114.9889 109.5154 

150 115.2668 116.3559 114.0293 110.9012 114.7852 123.9057 124.0244 112.8755 121.4621 110.0413 

 

4.3. Results of Variances and Variance Ratios for Various 

Sample Size 

This section presents both the variance and variance ratio 

of the two estimators; ˆ
PSy  based on a penalized spline and 

ˆ
HTy based on Horvitz Thompson and their respective graphs. 

The variance and variance ratios for different functions are 

summarized in table 7, and their comparative graphs in 

figures 1, 2, 3, 4 and 5 for the respective functions. 

4.3.1. Tabular Results of Variances and Variance Ratios for 

Various Sample Size 

The table 7 below shows both variance and variance ratios 

of the two estimators based on penalized splines and Horvitz. 

The variances of the two estimators for the 5 functions 

decrease as the sample size increases implying that the 

estimators are consistent. From the table, the ˆvar( )HTy  for 

linear and exponential functions are smaller than those of 

ˆvar( )PSy  except for the 9 sample sizes; 20, 60, 70, 90, 110, 

120, 130, 140 and 160 and 8 sample sizes 40, 70, 90, 100, 110, 

130, 150 and 180 respectively. This comparison is evident 

from the variance ratio;
ˆ

var
ˆ

PS

HT

y
y

 
 
 

for the same functions. 

For quadratic function the ˆvar( )PSy  estimator is less variant 

than Horvitz Thompson estimator since ˆvar( )PSy is 

consistently lower than that of Thompson estimator for all 

samples sizes except for 5 sample sizes; 30, 70, 140, 170 and 

180 and this applies to the variance ratio;
ˆ

var
ˆ

PS

HT

y
y

 
 
 

for the 

same function. For cycle 4 and cycle 2 the ˆvar( )HTy is slightly 

less variant than that of ˆvar( )PSy  in some samples except for 

the 7 sample sizes; 50, 60, 110, 120, 140, 160 and 180 and the 

6 sample sizes; 20, 40, 60, 130, 140 and 170 for cycle 2 and all 

these is evident from the respective ratios; ˆ
var

ˆ
PS

HT

y
y

 
 
 

. 
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Table 7. Results of Variances and variance ratios for various sample size. 

Sample size  10 20 30 40 50 

ˆvar( )PSy  

Lin 3651.667479 3951.1194439 3543.5359584 3337.6837219 1278.906399 

Qd 5,331,024 3,522,390 4,482,455 972,450.3 3,728,991 

Exp 168.278885 169.0653534 51.0707619 47.3712646 52.4873479 

C4 2904.529547 978.5458207 505.7774565 557.0358257 477.5578929 

C2 835.9659326 1292.6891074 190.0423932 221.8191635 511.4902605 

ˆvar( )HTy  

Lin 3441.982023 4170.5863917 3293.8879518 3320.0194090 1171.349553 

Qd 5,351,925 3,529,463 4,477,180 973,958.5 3,731,934 

Exp 163.048127 163.9132225 50.3517091 48.5950529 52.3219643 

C4 2609.500036 960.9689888 382.5380028 546.3226956 584.9590572 

C2 747.9882971 1358.9711656 169.4059765 231.5295217 459.9957258 

ˆvar( )
ˆvar( )

PS

HT

y
y

 

Lin 1.060920 0.9473774 1.0757913 1.0053205 1.091823 

Qd 0.9960946 0.9979960 1.001178 0.9984514 0.9.992114 

Exp 1.032081 1.0314321 1.0142806 0.9748166 1.0031609 

C4 1.113060 1.0182907 1.3221626 1.0196095 0.8163954 

C2 1.1176190 0.9512263 1.1218163 0.9580600 1.1119457 

 

Sample size  60 70 80 90 100 

ˆvar( )PSy  

Lin 1686.3531718 683.4909103 739.351333 621.8465705 1032.696102 

Qd 1,432,228 795,246.2 1,100,148 239,576.3 148,716.9 
Exp 37.5194780 10.8705338 12.2096085 17.0080090 5.2460144 

C4 221.6688694 288.1115958 114.015931 84.9656554 48.9687456 

C2 235.0572714 178.749618 364.9281303 334.5377284 74.1583869 

ˆvar( )HTy  

lin 1798.2234675 721.2150960 730.283623 640.0131115 992.073248 

Qd 1,434661 793,026.8 1,101,905 239,976.3 148,954.9 

Exp 36.9130210 11.5590297 12.1355654 17.2458368 5.5536149 
C4 222.6924910 285.6353110 107.396674 79.9022833 44.8840996 

C2 265.1027829 147.086222 338.3337506 332.5792995 63.1641415 

ˆvar( )
ˆvar( )

PS

HT

y
y

 

Lin 0.9377884 0.9476936 1.012417 0.9716154 1.040947 
Qd 0.9983042 1.002799 0.9984059 0.9983334 0.9984022 

Exp 1.0164293 0.9404365 1.0061013 0.9862096 0.9446126 

C4 0.9954034 1.0086694 1.061634 1.0633696 1.0910043 
C2 0.8866647 1.215271 1.0786040 1.0058886 1.1740583 

 

Sample size  110 120 130 140 150 

ˆvar( )PSy  

Lin 528.8463282 391.1319758 367.6803949 366.0277604 250.3687311 

Qd 552,643.4 566,478.0 397,977.0 205,447.0 111,742.5 

Exp 4.0804940 12.6728286 8.8227916 4.0807057 7.6035401 

C4 53.0041054 62.3777231 49.178826 45.8120890 31.2021121 

C2 51.9719975 102.0590988 39.9900411 78.6794029 26.379535 

ˆvar( )HTy  

Lin 563.9793390 418.7877861 414.6097232 377.8959278 230.0089091 

Qd 555,015.1 569,733.0 398,328.6 205,206.4 112,9230 

Exp 4.3935972 12.3957597 8.9766109 9 3.820459 7.7526387 

C4 73.9513379 65.9388513 35.895394 51.8420740 27.0439387 

C2 43.2446770 89.7462109 41.2334476 82.1997916 25.854080 

ˆvar( )
ˆvar( )

PS

HT

y
y

 

Lin 0.9377051 0.9339622 0.8868108 0.9685941 1.0885175 

Qd 0.9957268 0.9942867 0.9991173 1.001173 0.9895455 

Exp 0.9287365 1.0223519 0.9828644 1.0681190 0.9807680 

C4 0.7167430 0.9459935 1.370060 0.8836855 1.1537562 

C2 1.2018126 1.1371967 0.9698447 0.9571728 1.020324 

 

Sample size  160 170 180 190 

ˆvar( )PSy  

Lin 157.6309214 179.052477 65.0823883 28.0041116 

Qd 253,692.2 47,602.45 76,423.97 32,023.10 

Exp 3.657975 3.4205472 2.3161035 1.922969 

C4 28.7065251 11.8576488 17.4000800 7.9386513 

C2 25.326064 23.6213578 11.009247 7.680566 

ˆvar( )HTy  

Lin 168.0263317 136.965407 61.7790150 21.0822213 

Qd 254,282.6 47,307.85 76,267.43 32262.74 

Exp 3.602958 3.3717028 2.4699470 1.787780 

C4 31.0215984 8.1252690 18.8789233 4.2808000 

C2 14.801159 27.5178092 5.452016 2.981572 
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Sample size  160 170 180 190 

ˆvar( )
ˆvar( )

PS

HT

y
y

 

Lin 0.9381323 1.307282 1.0534708 1.3283283 

Qd 0.9976779 1.006227 1.002053 0.9925723 

Exp 1.015270 1.0144866 0.9377138 1.075619 

C4 0.9253722 1.4593546 0.9216670 1.8544784 

C2 1.711087 0.8584026 2.019298 2.576013 

 

4.3.2. Graphical Results of Variances and Variance Ratio 

for Various Sample Size 

Results in figures 1, 2, 3, 4, and 5 represent respectively, 

the graphical variance ratio for the five population functions; 

linear, quadratic, exponential, Cycle 4 and Cycle 2 

respectively for the two estimators based on penalized splines 

and Horvitz Thompson. Results from the five figures show 

that the ratio 
ˆ

var
ˆ

PS

HT

y
y

 
 
 

was concentrated below one for 

quadratic function, implying that Thompson estimator is 

more variant than ˆvar( )PSy  in quadratic. On the other side 

Horvitz Thompson estimator is less variant than ˆvar( )PSy  in 

linear, exponential cycle 4 and cycle 2 functions because 

their ratios concentrate slightly above one. 

4.4. Relative Bias 

The following table 8 shows the values of relative biases 

for the five population functions. The results from the table 

show that the relative biases for the two estimates are 

minimal, given that the population totals were in thousands, 

and this point to unbiasedness. It is also noted that the 

difference of the relative biases of the penalized spline 

estimator with its corresponding Horvitz Thompson 

estimators for all the five population functions is not very 

significant. Hence, the proposed model calibrated estimator 

is unbiased. 

 

Figure 1. Linear. 

 

Figure 2. Quadratic. 

 

Figure 3. Exponential. 

 

Figure 4. Cycle 4. 
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Figure 5. Cycle 2. 

Table 8. Relative Biases for three estimators. 

Estimator ˆ PSy
 

ˆHTy
 

Linear -0.0006773947 -0.0006504365 
Quadratic 0.002472271 0.002474501 
Exponential 0.00005334967 0.00005276563 

Cycle 4 -0.0004616429 -0.0007526457 

Cycle 2 0.01028577 0.00724342 

4.5. Results on Relative Efficiency for Various Sample Sizes 

4.5.1. Tabular Results for MSE and MSE Ratios for 

Various Sample Size  

The MSE and relative efficiency (MSE Ratios) for the five 

different functions are summarized in table 9. Generally, the 

estimator with a smaller MSE is regarded as the most 

efficient one. From table 9 MSEs of ˆ
PSy  is smaller than that 

of ˆ
HTy  in some samples sizes but from other sample sizes 

the ˆ
HTy  estimator has reduced MSE than the estimator; ˆ

PSy . 

The relative efficiencies (MSE Ratios) in table 9 examines 

the robustness of the various population functions. There 

doesn’t appear to be a clear noticeable performance 

difference of ˆ
PSy  estimator in comparison to ˆ

HTy estimator. 

In some instances ˆ
PSy  has a smaller error margin than ˆ

HTy , 

while in other samples, ˆ
HTy has smaller error margins than 

the nonparametric model calibrated estimator; ˆ
PSy . The 

ˆ
PSy  estimator is more efficient than ˆ

HTy estimator in all the 

samples except for 5 sample sizes; 30, 70, 140, 170 and 180 

for quadratic and 4 sample sizes; 30, 40, 110 and 140 for 

cycle 4. In addition, ˆ
PSy  estimator is slightly more efficient 

than ˆ
HTy  estimator for exponential functions and cycle 2, 

except for 7 sample sizes; 10, 20, 70, 80, 120, 130 and 180 

and 8 sample sizes; 30, 50, 60, 80, 90 110, 120 and 150 

respectively. On the other hand the estimator; ˆ
HTy  is slightly 

more efficient than ˆ
PSy  estimator in all the samples except 

for the 9 sample sizes; 20, 40, 60, 110, 120, 130, 150, 180 

and 190 for linear function. 

Table 9. Results of MSE and MSE ratios for various sample size. 

Sample size 10 20 30 40 50 

MSE 

ˆ PSy  

Lin 3761.901218 3997.1178405 3599.576631 3340.0779186 1278.927001 

Qd 7,446,041 4,738,647 4,550,979 984,679.2 3,799,186 
Exp 170.6475187 169.410735 52.5931846 48.8811167 53.3688749 

C4 2943.9179205 1007.5783450 568.007902 583.4024883 494.4464803 

C2 1195.9670865 1530.1841661 271.0469163 227.3060849 512.7431068 

MSE 

ˆHTy  

Lin 3529.915102 4219.3669187 3345.352957 3325.2848170 1179.902056 

Qd 7,485,276 4,744,751 4,547,491 986,394.6 3,802,210 

Exp 167.6882442 159.122957 57.2071173 51.7141427 56.1322306 
C4 2903.0705831 1142.1461835 445.271374 468.4352616 641.6641625 

C2 1306.1443127 1686.9108741 202.1827495 296.3214559 414.9023874 

MSE 

ˆ PSy

/MSE 

ˆHTy  

Lin 1.010684 0.9841703 1.000111 0.9907866 1.024582 
Qd 0.9947583 0.9987136 1.000767 0.9982609 0.9992047 

Exp 1.0176475 1.064653 0.9193469 0.9452176 0.9507706 

C4 0.9440421 0.8657855 1.015070 1.1705200 0.9487043 
C2 0.9441625 0.9612389 1.0125236 0.8432357 1.1093576 

 

Sample size 60 70 80 90 100 

MSE 

ˆ PSy  

Lin 2213.3671469 868.6904893 941.9650729 625.4252385 1144.486644 

Qd 1,444,626 824,239.5 1,100,902 239,875.2 194,317.5 
Exp 38.555204 11.8924768 12.425321 17.0663297 6.3248485 

C4 241.8879912 288.1286386 115.2612613 101.4898390 50.2538319 

C2 285.2328794 199.2620918 396.7704457 335.674333 74.3001555 

MSE 

ˆHTy  

Lin 2293.3339425 922.9854323 981.6586883 640.0297615 1102.101586 

Qd 1,447,216 822,176.1 1,102,720 240,235.0 194,374.0 

Exp 42.740574 11.8107904 11.150557 17.9337831 6.9595295 
C4 346.3966814 309.8198703 108.1009965 115.8467571 55.8920469 

C2 337.3473346 188.3122440 356.2083152 273.639732 76.4726920 

MSE 

ˆ PSy

/MSE 

ˆHTy  

Lin 0.9875441 1.0345659 1.0248652 1.0786348 1.003822 
Qd 0.9982109 1.002510 0.9983508 0.9985023 0.9997094 

Exp 0.902075 1.0069163 1.114323 0.9516302 0.9088040 

C4 0.7290980 0.9229237 0.9957634 0.7655590 0.8227334 
C2 1.0160905 0.8744224 1.0139206 1.217429 0.8709300 

 

Sample size  110 120 130 140 150 
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MSE ˆ PSy  

Lin 655.8482220 477.6281396 367.6808541 379.2494284 292.1500391 
Qd 607,022.7 593,307.8 415,432.1 267,156.0 122,666.1 

Exp 4.1202120 13.494986 9.7373345 6.7647846 7.6434632 

C4 83.495772 77.3385387 50.1603724 50.3699637 33.6924933 
C2 52.271479 104.7423976 40.0147599 79.4145996 26.3795354 

MSE ˆHTy  

Lin 700.5660838 545.2801802 415.5757672 382.8570384 289.2821260 

Qd 608,585.2 596,561.5 415,988.3 267,093.0 123,657.2 
Exp 4.4396357 13.214463 9.8181521 6.5505387 7.8190212 

C4 104.381583 91.3097778 39.0132544 51.7093668 40.4558555 

C2 39.431819 89.9134820 41.9892032 90.0818898 22.8535505 

MSE ˆ PSy /MSE 

ˆHTy  

Lin 0.9538936 0.9867949 0.9313259 1.0079811 0.9156409 

Qd 0.9974326 0.9945459 0.9986628 1.000236 0.9919849 

Exp 0.9107537 1.057114 1.0250755 0.9591387 0.9498795 
C4 1.106025 0.8855587 0.9287332 1.0412362 0.7055897 

C2 1.102070 1.0183366 0.9902773 0.9336432 1.1319365 

 

Sample size  160 170 180 190 

MSE ˆ PSy  

Lin 165.6221865 179.918580 65.9200680 31.1640058 
Qd 253,768.2 62,777.18 76,511.68 36,341.06 

Exp 3.9267096 3.4288437 2.8152284 3.7338132 

C4 47.4667990 15.1352895 23.7547279 8.0433500 
C2 32.9937376 23.6264682 14.1782831 9.0175933 

MSE ˆHTy  

Lin 179.0923562 137.646389 65.1613352 24.2407817 

Qd 254,336.6 62,561.61 76,335.32 36,612.13 
Exp 3.8768434 3.3762876 3.0369193 3.7901165 

C4 47.4120481 14.0677071 31.5174763 13.4859242 

C2 20.8959407 28.3225165 8.3965927 7.2576928 

MSE ˆ PSy /MSE 

ˆHTy  

Lin 1.0137243 1.050970 0.9480256 0.9487241 

Qd 0.9977651 1.003446 1.002310 9.925960 

Exp 0.9807432 0.9651552 1.0343102 0.9379330 
C4 0.9488392 0.7139708 0.7358081 0.3177479 

C2 0.8650733 0.9779437 0.6767941 0.4360844 

 

4.5.2. MSE and MSE Ratio Graphs for Various Sample 

Sizes 

Figure 6 up to figure 10 show graphical representation of 

relative efficiency for the respective population functions. 

The MSE ratios for the five functions are seen to mostly 

concentrated at a point slights below one. This implies that 

the nonparametric estimator; ˆ
PSy  is more efficient than ˆ

HTy  

and that it’s a robust estimator. 

 

Figure 6. Linear. 

 

Figure 7. Quadratic. 

 

Figure 8. Exponential. 
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Figure 9. Cycle 4. 

 

Figure 10. Cycle 2. 

5. Conclusion 

The results from this study show that, the nonparametric 

calibrated estimator; ˆ
PSy  is slightly more efficient than ˆ

HTy . 

The estimator; ˆ
PSy  is also very robust because it is not 

failing for all the five functions compared with the design 

estimator ˆ
HTy  which is known as a well-performing 

estimator. Generally, the results have also shown that the 

performance of the nonparametric estimator ˆ
PSy  is 

indistinguishable from that of the design estimator in some 

instances, and that ˆ
PSy  is a normal, unbiased and consistent 

estimator. Therefore, this study concludes that the 

nonparametric model calibrated estimators; it is a robust 

estimator since it does not fail under misspecification. 

Due to these good properties of nonparametric model 

calibrated estimators, this study, therefore, recommends the 

use of such model calibrated estimators in the estimation of 

population total in sampling. In the present real-world 

problem where there are missing variables at both cluster and 

cluster element levels, yet there is relevant auxiliary 

information about the variables, model calibrated estimators 

would be the estimators of choice. This study has further 

shown that in cases where some cluster and elements within 

clusters are missing but auxiliary information is available at 

both levels, then an advantage can be taken of this auxiliary 

information to fit both cluster totals and cluster elements, 

which are then calibrated in the estimation of population 

total. This provides the researcher with a normal, consistent, 

unbiased, robust and efficient estimator of population total. 
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