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Abstract: In this paper, we consider power odd generalized exponential-Gompertz (POGE-G) distribution which is capable 

of life tables to calculate death rates (failure). Based on simulated data from the PPOGE-G distribution, we consider the 

problem of estimation of parameters under classical approaches and Bayesian approaches. In this regard, we obtain maximum 

likelihood (ML) estimates, maximum product of spacing (MPS) and Bayes estimates under squared error loss function. We 

also compute 95% asymptotic confidence interval and highest posterior density interval estimates. The Monte Carlo simulation 

will be conduct to study and compare the performance of the various proposed estimators (simulation study indicates that the 

performance of MPS estimates is better MLE estimates and the performance of Bayes estimates is also better). Finally, 

application of a real data from the projections of the future population for the total of the Egyptian Arabic Republic for the 

period 2017-2052, depending on the book which introduced from the central agency for public mobilization and statistics in 

Feb (2019) from this application it could be said that this distributions can be applied to mortality rate data set. The present 

paper can also be extended to design of progressive censoring sampling plan and other censoring schemes can also be 

considered. 

Keywords: Power Odd Generalized Exponential-Gompertez Distribution, Maximum Likelihood Estimation,  

Maximum Product Spacing, Bayesian Estimation, Metropolis-Hasting Algorithm, Mortality Rates in Egypt 

 

1. Introduction 

There are several new families of probability distributions 

which are proposed by several authors. Such families have 

great flexibility and generalize many well-known 

distributions. So several classes have been proposed, in the 

statistical literature, by adding one or more parameters to 

generate new distributions. Among this literature exponential 

Lomax El-Bassiouny et al. [10], exponentiated Weibull- 

Lomax Hassan and Abd-Allah [13], the odd lomax generator 

Cordeiro et al. [8] The generalized odd inverted exponential-

G family Chesneau et al. [5], The odd log-logistic Lindley-G 

Alizadeh et al. [2] and The Odd Dagum Family of 

Distributions Afify et al. [1]. The exponentiated power 

lindley distribution by Ashour et al. [3] the beta 

exponentiated power lindley distribution by Pararai et al. 

[14].  

Ghitany et al. [12] introduced an extension of Lindley 

distribution by using the power transformation � = �� . 

Hence, it is of interest to know what would be the 

distribution of similar power transformation of odd 

generalized exponential Gompertz distribution by using the 

transformation and the odd generalized exponential 

Gompertz distribution see El-Damcese et al. [11] 

The cumulative distribution function (cdf) of the PPOGE-

G distribution is given by 

���; �, 
, �, �, 
� = �1 − ����� 	��������� �!"#$ , t > 0, α, β, λ, c, γ > 0                             (1) 

where � is the shape parameter and ��, 
, 
, �� are the scale parameters. 
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The probability density function (pdf) of the POGE-G distribution is given by 

-��� = 
��
���!	�./� 	� 	��������! 	����� 	��������� �!" 	�1 − ����� 	��������� �!"#$�!
                      (2) 

Figure 1 illustrated the behavior of the pdf of POGE-G distribution at different values of �, �, 
, 
, �. 

The hazard rate function of POGE-G distribution can be obtained from 

ℎ��� = �$1�/���	����	� 	��������� 	��23�	��������� ��4	
567
68!���23�	��������� ��4

96:
6;<��

!�
567
68!���23�	��������� ��4

96:
6;<                                 (3) 

and its shape is illustrated in Figure 2 some various values of �, �, 
, 
, �. 

 

Figure 1. Density function of POGE-G distribution at different parameters. 

 

Figure 2. Hazard rate function of POGE-G distribution at different parameters. 
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For parameter estimation of the unknown parameters of 

the POGE-G distribution ��, 
, �, 
, ��  there are three 

methods: Maximum likelihood estimation, maximum product 

spacing and Bayesian estimation. 

2. Maximum Likelihood Estimation 

Suppose that a random sample of = units whose lifetime 

follow POGE-G distribution with cdf given in Eq. (1) and its 

pdf given in Eq. (2) and the likelihood function is defined as 

>?@A = B-?��C�; 	@AD
CE!  

where @ = ��, 
, �, 
, ��. Thus, the likelihood function for 

the POGE-G distribution can be written as 

F�@, �� ∝ ��
	�H�D ∏ �J�!DCE! �./K�������K�!������������K����!" �1 − �����������K����!"#$�!
                       (4) 

By taking logarithm of >��, 
, �, 
� to obtain log-likelihood ℒ as 

ℒ = =F=�
� + =F=��� + =F=��� + =F=�H� + �H − 1�∑ ln	���DCE! + � ∑ �JDCE! + 1. ∑ Q�./K − 1RDCE! − 
 ∑ ����S���K�!T − 1"DCE! +
�� − 1�∑ �1 − ���3���S���K��T�!4#DCE! 	                                                                   (5) 

by differentiating the associated log-likelihood ℒ with respect to �, 
, �, 
,� and equating them to zero, we get: 

UℒU1 =	 D1 + !V∑ ?�V/� − 1ADCE! − �V∑ ��W��W���! ?�V/� − 1ADCE! + �$�!��V ∑ ������W��W���� �!" X��W��W���! − 1YDCE! 	= 0      (6) 

UℒU� =	 D� −∑ X��W��W���! − 1YDCE! + �� − 1�∑ ������W��W���� �!" X��W��W���! − 1YDCE! 	= 0                             (7) 

UℒU$ = D$ +∑ �1 − ������W��W���� �!"#DCE! 	= 0                                                   (8) 

ZℒZ
 = 	=
 +[ln���D
CE! + \[�� ln���D

CE! + �[�V/� ln���D
CE! − 
[��1V��W���! �V/��� ln���D

CE! + �
 

�� − 1�∑ ��W��W���! �V/���	[ln	���]������W��W���� �!"DCE! 	= 0                                            (9) 

ZℒZ� = 	[��D
CE! + 3	�\[�V/��� +[S− �\T ?�V/� − 1AD

CE!
D

CE! 4 − 
[�1V��W���! X�\ �V/� − �\ ?�V/� − 1AYD
CE! +	

�� − 1�∑ ��W��W���! 	������W��W���� �!" 	Q1V ���V/� − 1V ?�V/� − 1ARDCE! = 0												                   (10) 

where �_, 
̀, �_, 
̀ and �̂ are the MLEs of �, 
, �, 
 and � respectively. Now, the asymptotic variance-covariance matrix of the 

MLEs of �, 
, �, 
  and 	�  can be obtained by inverting the observed information matrix b�@�  under standard regularity 

conditions, the multivariate normal cd�0; 	b�@e��!� distribution can be used to construct approximate confidence intervals for 

the parameters. Here, b�@e� is the total observed information matrix evaluated at @e. 

b�@e� = −
fgg
ggg
gh �UiℒU1i � UiℒU1U� � UiℒU�U1 �UiℒU�i 

� UiℒU1U$ � UiℒU1U� � UiℒU�U$ � UiℒU�U� � UiℒU$U1 � UiℒU$U� � UiℒU�U1 � UiℒU�U� 
�UiℒU$i � UiℒU$U� � UiℒU�U$ �UiℒU�i jkk

kkk
kl

|1E1n,�E�e,$E$n,�E�e,.E.̂

                                       (11) 
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According to particular regularity conditions, the two-sided 100�1 − o�%, 0 < o < 1, asymptotic confidence intervals for 

the parameters �, 
, �, 
 and � can be obtained. 

3. Bayesian Estimation 

For Bayesian parameter estimation we will considered squared error loss function. We propose to use independent gamma 

priors for both λ and α having pdfs r!��� ∝ �s��! ��o�−t!�� 	� > 0, u!, t! > 0	                                                      (12) rv�
� ∝ 
si�! ��o�−tv
� 	
 > 0, uv, tv > 0                                                      (13) rw��� ∝ 
sx�! ��o�−td�� 	� > 0, ud, td > 0                                                      (14) 

And for parameters β	and	γ using an exponential priors with pdfs r{��� ∝ � ��o�−�!�� 	� > 0, �! > 0	                                                        (15) rd�
� ∝ 
 ��o�−|
� 	
 > 0, | > 0                                                          (16) 

All the hyper-parameters u!, t!, uv, tv, ud, td, �!, |  are chosen to be known and non-negative. Different priors like 

exponential and gamma has been used to obtain Bayesian Estimate of λ, α, β, γ and c using MCMC methods it has been found 

that gamma prior gives quite good estimates compare to other priors. The joint prior for �, 
, �, �and 
 is given by r��, 
, �, 
� = r!���	rv�
�rw���	r{���rd�H� r��, 
, �, �, 
� ∝ 	�
	�s��!	
si�!	�sx�! ��o�−t!� − tv
 − td� − �!� − |
�                    (17) 

The corresponding posterior density given the observed data � = ��!, �v, . . . , �D� can be written as 

��, 
, �, �, 
|~� = r��, 
, �, �, 
�>��, 
, �, �, 
�� � � r��, 
, �, �, 
�>��, 
, �, �, 
�	|�	|
	|�|�|
������  

The posterior density function can be written as 

r��, 
, �, �, 
|~� = ��!��D	
D�D�s��!	
D�si�!�D�sx�!� exp�−t!� − tv
 − td� − �!� − |
�∑ �C�DCE! exp �∑ Q	 ��C� +DCE!1. �exp���C�� − 1� − 
 �exp S1. 	�exp��C�� − 1�T − 1 R 	∑ �1 − exp Q−
 �exp S1. 	�exp��C�� − 1�T − 1 R DCE! $�!
  (18) 

where 

� = � � � � � ��D	
D�D�s��!	
D�si�!� ��o�−t!� − tv
 − td� − �!� − |
�∑ �C�DCE! ��o �∑ Q	 ��C� +DCE!���������� 1. ���o���C�� − 1� − 
 ���o S1. 	���o��C�� − 1�T − 1 R ∑ �1 −DCE!
��o Q−
 ���o S1. 	���o��C�� − 1�T − 1 R $�! |�	|
|�	|�|
			  

Thus, the posterior density can be rewritten as 

r��, 
, �, �, 
|~� ∝ ��D	
D�D�s��!	
D�si�!�D�sx�!� ��o�−t!� − tv
 − �!� − |
�[�C�D
CE!  

��o �[3	 ��C� + �� ���o���C�� − 1� − 
 ���o ��� 	���o���C�� − 1�� − 1�4D
CE! � 

[�1 − ��o 3−
 ���o ��� 	���o���C�� − 1�� − 1�4�D
CE!

$�!
 

The Bayes Estimator of any loss function, say ���, 
, �� under the squared error, is given by ����, 
, �, �, 
� = � � � � � ���, 
, �, �, 
�r��, 
, �, �, 
|��	|�	|
|
	|�	|����������� 	                       (19) 
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Unfortunately, Eq. (19) cannot be computed for general ���, 
, �, �, 
�. Thus, the Bayes estimates of �, 
, �, �, 
	can 

be obtained numerically by using Markov Chain Monte Carlo 

(MCMC). 

3.1. Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) is a computer-driven 

sampling method. It allows one to characterize a distribution 

without knowing all of the distribution mathematical 

properties by random sampling values out of the distribution 

Ravenzwaaij et al. [15]. 

MCMC is particularly useful in Bayesian inference 

because of the focus on posterior distributions which are 

often difficult to work with via analytic examination. In these 

cases, MCMC allows the user to approximate aspects of 

posterior distributions that cannot be directly calculated (e.g., 

random samples from the posterior, posterior means, etc.). To 

draw samples from a distribution using MCMC: 

1. Starting with an initial guess: just one value that might 

be plausibly drawn from the distribution. 

2. Producing a chain of new samples from this initial 

guess. Each new sample is produced by two simple 

steps: 

a) Proposal: a proposal for the new sample is created by 

adding a small random perturbation to the most 

recent sample. 

b) Acceptance: the new proposal is either accepted as 

the new sample, or rejected (in which case the old 

sample retained). 

Proposal Distribution: A distribution for randomly 

generating new candidate samples, to be accepted or rejected. 

There are many ways of adding random noise to create 

proposals, and also different approaches to the process of 

accepting and rejecting, such as: Gibbs-sampling and 

Metropolis-Hastings algorithm. 

3.2. Metropolis-Hastings Algorithm 

Metropolis-Hastings (MH) algorithm is a useful method 

for generating random samples from the posterior 

distribution using a proposal density. To implement the 

MH algorithm we have to define a proposal distribution ����|��  and an initial values ����  of the unknown 

parameters. For the proposal distribution, we consider a 

bivariate normal distribution, that is ����|�� 	≡ 	cv��, ���, 
where �	 = 	 ��, 
, �, 
, ��  and ��  represent the variance-

covariance matrix, we may get negative observations 

which are not acceptable. For the initial values, we guess 

an appropriate values to �, 
, �, 
  and � . Therefore, we 

propose the following steps of MH algorithm to draw 

sample from the posterior density r��, 
, �, 
, �|��  (Dey 

and Pradhan [9] 

Step 1. Set initial value of � as �	 = 	 ����. 
Step 2. For �	 = 	1,2, . . . , � repeat the following steps: 

1. Set �	 = 	 ��C�!�. 
2. Generate a new candidate parameter value δ from cv�ln � , ���. 

3. Set � = exp�H�. 
4. Calculate 

� = min �1, r���|��r��	|��� 

Update ��C� = �� with probability�; otherwise set ��C� = �. 

The initial value for �  is considered to be the MLE �_ = ��_, 
̀, �_, 
̀, �̂�  of � = ��, 
, �, 
, �� . While, the selection 

of ��  is considered to be the asymptotic variance-covariance 

matrix b�!��, 
, �, 
, ��, where b�. � is the Fisher information 

matrix. Notice that, the selection of ��  is an important issue 

in the MH algorithm where the acceptance rate is depends on 

upon this. 

Finally, from the random samples of size � drawn from 

the posterior density, some of the initial samples (burn-in) 

can be discarded, and remaining samples can be further 

utilized to compute Bayes estimates. More precisely the Eq. 

(5) can be evaluated as 

������, 
, �, 
, �� = !���� ∑ ���C , 
C , �C , 
C , �C��CE!    (20) 

where F� represent the number of burn-in samples. 

3.3. Highest Posterior Density 

We suggest utilizing the technique of Chen and Shao [7] 

to calculate highest posterior density (HPD) interval 

estimates for the unknown parameters of the GIE 

distribution. The technique of Chen and Shao has been 

broadly utilized for constructing HPD intervals for the 

unknown parameters of the distribution of interest. In the 

present study, we will employ the samples drawn using the 

proposed MH algorithm to construct the interval estimates. 

More accurately, let us assume that ��\|��  denotes the 

posterior distribution function of \. Let us further suppose 

that \���  
be the pth quantile of 
 , that is, \��� =inf{\: ��\|�� 	≥ 	o} , where 0 < o < 1 . Notice that for a 

given \∗, a simulation consistent estimator of ��\∗|�� can 

be estimated as 

��\∗|¦� = 1� − F� [ bV§V∗
�

CE��  

Here b�§�∗  is the indicator function. Then the 

corresponding estimate is obtained as 

�n�\∗|¦� =
567
68 0	if	\∗ ≤ \����	
[ ©ª 	if	\�C� ≤ \∗ ≤ \�C�!�	C
ªE�� 1	if	\∗ > \���	

 

where ©ª = !���� and \�ª� are the ordered values of \ª. Now, 

for � = F� , . . . , �, \��� 
can be approximated by 
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\«��� = ¬ \����	if	o = 0		\�C�	if	[ ©CC�!
ªE�� < o < 	[ ©CC

ªE�� 	 
Now to obtain a 100�1 − o�% HPD credible interval for \, let 

­ª = �\«� ª� , \«Sª��!����� T� , ® = F� , … , [o�], 
here [u] denotes the largest integer less than or equal to u. 

Then choose ­ª∗  among all the ­ª� s such that it has the 

smallest width. 

4. Maximum Product of Spacing 

Suppose that an ordered random sample �!, . . . , �D  drawn 

from POGE-G distribution with parameters ° = ��, 
, �, 
, �� 
and the cdf of the spacing is constructed as: 

±C�
, �, 
, �, �� 	= 	�	��C:D	|	
, �, 
, �, �� 	− 	���C�!:D	|	
, �, 
, �, ��,                                  (21) 

where ����:D	|	
, �, 
, �, �� 	= 	0	u=|	���D�!:D	|	
, �, 
, �, �� = 1. 
Clearly 

[±C�
, �, 
, �, �� 	= 	1D�!
CE!  

²�
, �, 
, �, �� = 3B±C�
, �, 
, �, ��D�!
CE! 4 !D�!

 

or, equivalently, by maximizing the function, 

³�
, �, 
, �, �� = !D�!∑ F´�±C�
, �, 
, �, ��D�!CE!                                                                (22) 

The spacings are defined as follows: 

±! = ���!� = µ1 − ��������������� �!�¶$,±�D�!� = ���D� = µ1 − ������������·�� �!�¶$ 

And the general term of spacing’s is given by, 

±C = ���C� − ���C�!� = µ1 − �������S����¸��T�!�¶$ − µ1 − �������S����¸��T�!�¶$                                  (23) 

Let ¹C = ����	�����¸�! �
 

Thus, ±C  can be rewritten as follows 

±C = ���C� − ���C�!� = º1 − ����»¸�!�¼$ − º1 − ����»¸�!�¼$ 

Hence the corresponding H is given by 

³ = !D�! {F=±! + ∑ F=±CDCEv + F=±D�!} = !D�! ½F=º1 − ����»¸�!�¼$ + ∑ F= Qº1 − ����»¸�!�¼$ − º1 − ����»¸�!�¼$RDCEv ¾ +!D�! ½F=º1 − ����»·�!�¼$¾  (24) 

Following Cheng and Amin [6], the maximum product of spacings estimators 
̀�¿�, �_�¿�, �_�¿�, 
̀�¿�	u=|	�̂�¿�	of 

the parameters α, β, λ, γ and c are obtained by maximizing the geometric mean of the spacings with respect to α, β, λ, γ and c. 

By solving the nonlinear equations, 
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UU�³�
, �, 
, �, �� = !D�!∑ !ÀC��,$,�,1,.� º∆!?�C,DÂ
, �, 
, �, �A − ∆!?�C�!,DÂ
, �, 
, �, �A¼D�!CE! = 0             (25) 

UU$³�
, �, 
, �, �� = !D�!∑ !ÀC��,$,�,1,.� º∆v?�C,DÂ
, �, 
, �, �A − ∆v?�C�!,DÂ
, �, 
, �, �A¼D�!CE! = 0             (26) 

UU1³�
, �, 
, �, �� = !D�!∑ !ÀC��,$,�,1,.� º∆w?�C,DÂ
, �, 
, �, �A − ∆w?�C�!,DÂ
, �, 
, �, �A¼D�!CE! = 0             (27) 

UU.³�
, �, 
, �, �� = !D�!∑ !ÀC��,$,�,1,.� º∆{?�C,DÂ
, �, 
, �, �A − ∆{?�C�!,DÂ
, �, 
, �, �A¼D�!CE! = 0            (28) 

UU�³�
, �, 
, �, �� = !D�!∑ !ÀC��,$,�,1,.� º∆d?�C,DÂ
, �, 
, �, �A − ∆d?�C�!,DÂ
, �, 
, �, �A¼D�!CE! = 0            (29) 

where 

∆!= ��1.������! �������������� �!" 	�1 − �������������� �!"#$�!
 

∆v= �1 − �������������� �!"#$ F= �1 − �������������� �!"# 

∆w= �
� ?�./� − 1A�1.������! �������������� �!" 	�1 − �������������� �!"#$�!
 

∆{= ��������������� �!" 	�1 − �������������� �!"#$�! + 
�1.������! X�� ���./� − ��v ?�./� − 1AY 
∆d= �
����./��1.������! �������������� �!" 	�1 − �������������� �!"#$�! [ln	���] 

For asymptotic confidence intervals using MPS method, 

it’s necessary to obtain the elements of the Fisher information 

matrix b�@e� by taking the second derivatives of the function 

H with respect to @e . The approximate �1 − o�	100% 

confidence intervals for the parameters α, λ, γ, β and c are 

given. see Anatolyev and Kosenok [4]. 

5. Simulation Study and Data Analysis 

The aim of this section is to set a comparison the 

performance of the different methods of estimation discussed 

in the previous sections. We analyze a real data set for 

illustrative purpose; also, a simulation study is employed to 

check the behavior of the proposed methods as well as to 

assess the statistical performances of the estimators. We used 

R-statistical programming language for calculation. Further, 

we utilize bbmle and HDInterval packages to compute 

MLEs, MPS and HPD interval in R-language. 

5.1. Simulation Study 

We employ a Monte Carlo simulation study to compare the 

performance of proposed methods of estimation. We simulate 

1000 generating data from POGE-G distribution with initial 

values: 

1) Case I: � = 0.5, 
 = 0.5, � = 2, � = 1.5, 
 = 1.5 

2) Case II: � = 0.5, 
 = 2, � = 2, � = 1.5, 
 = 1.5 

Based on the generated data, firstly, we calculate 

maximum likelihood estimates and associated 95% 

asymptotic confidence interval estimates. Note that the initial 

guess values are considered to be same as the true parameter 

values while obtaining maximum likelihood estimates. 

Based on the generated data, firstly, we calculate 

maximum product of spacing estimates and associated 95% 

asymptotic confidence interval estimates. Note that the 

initial guess values are considered to be same as the true 

parameter values while obtaining maximum product 

spacing estimates. 

For Bayesian estimation, we calculate Bayes estimates 

using the MH algorithm under the informative prior. 

These priors are then plugged-in to calculate the desired 

estimates. While utilizing MH algorithm, we take into 

account the maximum likelihood estimates as initial guess 

values, and the associated variance–covariance matrix. At 

the end, we discarded 1000 burn-in samples among the 

overall 5000 samples generated from the posterior density, 

and subsequently obtained Bayes estimates, and HPD 

interval estimates utilizing the technique of Chen and 
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Shao [7]. 

All the average estimates for both methods are reported in 

Table 1 and Table 2. Further, the first row represents the 

average estimates and interval estimates, and in the second 

row, associated means square errors (MSEs) and average 

interval lengths (AILs) with coverage percentages (CPs) are 

reported. The convergence of MCMC estimation for �, 
, �, 
, � can be showed in figure 3 and figure 4. 

From tabulated values it can be noticed that depended on 

MSEs, higher values of n lead to better estimates. It is also 

noticed that the performance of the Bayes estimates obtained 

is better than the MLE estimates. It can also be noticed that 

the AILs and associated CPs of HPD intervals of Bayes 

estimates are better than those of MLE estimates. 

From tabulated values it can be noticed that depended on 

MSEs, higher values of n lead to better estimates. It is also 

noticed that the performance of the MPS estimates obtained 

is better than the MLE estimates in the previous section. 

Table 1. Estimated values, interval estimates, MSEs, AILs and CPs for MLE and Bayesian (MCMC) for number of simulation 5000. 

Initial: Ä = Å. Æ, Ç = Å. Æ, È = É, Ê = Ë. Æ, Ì = Ë. Æ 

n parameters 
MLE MPS Bayesian (MCMC) 

Estimate MSE ACI AIL/CP Estimate MSE ACI AIL/CP Estimate MSE HPD interval AIL/CP 

200 


  0.78 (0.45) 0.001,1.98 (1.98\95.6) 0.47 (0.21) 0.01,1.37 (1.37\94.6) 0.43 (0.16) 0.003,1.29 (1.29\96.5) �  1.77 (0.31) 0.77,2.77 (1.99\95.9) 1.87 (0.25) 0.93,2.81 (1.87\95.6) 1.85 (0.27) 0.91,2.83 (1.91\96.1) �  0.51 (0.04) 0.11,0.90 (0.78\95.5) 0.55 (0.04) 0.16,0.96 (0.79\96.2) 0.63 (0.07) 0.23,1.16 (0.92\96.8) 
  2.26 (2.17) 0.002,4.74 (4.74\95.3) 1.54 (0.98) 0.01,3.48 (3.48\93.9) 1.59 (0.88) 0.45,3.69 (3.24\95.8) 

c 1.20 (0.57) 0.001,2.55 (2.55\96.6) 1.66 (0.54) 0.26,3.06 (2.80\97.9) 1.54 (0.51) 0.21,2.77 (2.57\95.8) 

300 


  0.71 (0.32) 0.001,1.74 (1.74\94.6) 0.43 (0.16) 0.001,1.21 (1.21\94.90) 0.40 (0.13) 0.03,1.15 (1.12\95.6) �  1.82 (0.20) 1.02,2.63 (1.61\96.1) 1.89 (0.1) 1.16,2.62 (1.47\96.7) 1.87 (0.19) 1.18,2.70 (1.53\96.7) �  0.50 (0.03) 0.15,0.86 (0.71\96.1) 0.54 (0.04) 0.19,0.91 (0.72\95.8) 0.62 (0.07) 0.24,1.09 (0.84\96.8) 
  2.03 (1.37) 0.001,4.07 (4.07\94.5) 1.42 (0.62) 0.001,2.96 (2.96\94.2) 1.49 (0.57) 0.53,3.13 (2.59\95.6) 

c 1.30 (0.43) 0.07,2.54 (2.47\97.2) 1.72 (0.47) 0.45,2.99 (2.54\97.5) 1.60 (0.45) 0.37,2.89 (2.52\97.7) 

500 


  0.67 (0.24) 0.001,1.58 (1.58\94.8) 0.43 (0.12) 0.001,1.11 (1.11\95.2) 0.40 (0.09) 0.04,1.06 (1.02\95.7) �  1.86 (0.11) 1.24,2.48 (1.23\97.0) 1.92 (0.09) 1.35,2.49 (1.13\96.3) 1.91 (0.11) 0.04,1.06 (1.03\95.7) �  0.50 (0.02) 0.19,0.81 (0.62\96.4) 0.55 (0.02) 0.23,0.86 (0.62\96.0) 0.62 (0.06) 0.26,1.03 (0.76\96.4) 
  1.86 (0.80) 0.25,3.47 (3.22\95.1) 1.39 (0.42) 0.14,2.65 (2.51\94.7) 1.46 (0.38) 0.56,2.76 (2.19\95.5) 

c 1.36 (0.31) 0.30,2.41 (2.10\96.9) 1.68 (0.32) 0.61,2.75 (2.13\97.4) 1.56 (0.32) 0.53,2.73 (2.20\97.6) 

ACI: Asymptotic confidence interval, AIL: Average interval length, CP: Coverage probability 

Table 2. Estimated values, interval estimates, MSEs, AILs and CPs for MLE, MPS and Bayesian (MCMC) for number of simulation 5000. 

Initial: Ä = Å. Æ, Ç = É, È = É, Ê = Ë. Æ, Ì = Ë. Æ 

n Parameters 
MLE MPS Bayesian (MCMC) 

Estimate MSE ACI AIL/CP Estimate MSE ACI AIL/CP Estimate MSE HPD interval AIL/CP 

200 


  2.48 (2.84) 0.001,5.65 (5.67\94.90) 1.76 (1.95) 0.001,4.46 (4.48\94.40) 1.55 (1.85) 0.012,4.27 (4.14\95.30) �  1.74 (0.58) 0.02,3.15 (2.82\96.70) 2.10 (0.51) 0.71,3.50 (2.79\97.10 2.01 (0.50) 0.69,3.41 (2.71\96.60) �  0.54 (0.06) 0.0001,1.00 (0.91\96.0) 0.47 (0.06) 0.002,0.97 (0.95\95.60) 0.58 (0.09) 0.11,1.19 (1.08\96.30) 
  2.14 (1.98) 0.003,4.60 (4.61\95.60) 1.38 (1.10) 0.01,3.44 (3.45\94.0) 1.45 (1.03) 0.28,3.55 (3.27\95.20) 

c 1.37 (0.89) 0.002,3.22 (3.20\95.40) 2.02 (1.45) 0.04,4.16 (4.17\98.70) 1.88 (1.09) 0.33,3.63 (3.29\96.20) 

300 


  2.37 (2.24) 0.01,5.21 (5.21/94.5) 1.7 (1.83) 0.02,4.3 (4.3/94.7) 1.51 (1.79) 0.06,4.13 (4.07/95.1) �  1.76 (0.47) 0.48,3.03 (2.54/97.1) 2.09 (0.45) 0.79,3.4 (2.6/97) 2.01 (0.43) 0.65,3.16 (2.51/95.6) �  0.53 (0.05) 0.07,1.01 (0.93/95.1) 0.48 (0.06) 0.007,0.96 (0.96/96.7) 0.6 (0.1) 0.1,1.11 (1.01/95.4) 
  2.02 (1.53) 0.01,4.22 (4.22/95.9) 1.37 (0.97) 0.01,3.29 (3.29/94.5) 1.44 (0.94) 0.3,3.42 (3.11/95.2) 

c 1.4 (0.82) 0.02,3.18 (3.18/95.1) 1.98 (1.28) 0.01,3.99 (3.99/97.9) 1.82 (1.02) 0.35,3.58 (3.22/96.4) 

500 


  2.35 (1.94) 0.01,5 (5/94.5) 1.85 (1.49) 0.01,4.23 (4.23/96) 1.65 (1.47) 0.14,3.84 (3.69/95.2) �  1.78 (0.38) 0.64,2.92 (2.28/97.5) 2.07 (0.32) 0.96,3.18 (2.21/98.3) 1.99 (0.31) 0.8,2.93 (2.13/96) �  0.53 (0.04) 0.1,0.95 (0.84/95.7) 0.47 (0.04) 0.06,0.89 (0.83/96) 0.57 (0.07) 0.1,1.04 (0.94/96) 
  1.94 (1.18) 0.01,3.88 (3.88/96.4) 1.41 (0.75) 0.01,3.11 (3.11/93.3) 1.47 (0.7) 0.35,3.25 (2.9/95.4) 

c 1.4 (0.7) 0.02,3.03 (3.03/95.8) 1.88 (1.01) 005,3.7 (3.64/98) 1.74 (0.81) 0.33,3.39 (3.05/96.1) 

ACI: Asymptotic confidence interval, AIL: Average interval length, CP: Coverage probability 
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Figure 3. Convergence of MCMC estimation for � = 0.5, 
 = 0.5, � = 2, � = 1.5, 
 = 1.5 when = = 500. 
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Figure 4. Convergence of MCMC estimation for � = 0.5, 
 � 2, � � 2, � � 1.5, 
 � 1.5 when = � 200. 
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5.2. Real Data Analysis (Mortality Rates in Egypt) 

In order to demonstrate the usefulness of the proposed 

model in the vital statistics, the data set was taken from the 

projections of the future population for the total of the 

Egyptian Arabic Republic for the period 2017-2052, 

depending on the book which introduced from the central 

agency for public mobilization and statistics in Feb. (2019). 

Table 3 gives calculation of the mortality rates depending 

on the category ages for 2017 other than infants using 

number of mortality from vital statistics and number of 

populations (Males). 

Table 3. Mortality rates depending on the category ages for 2017. 

Categories Male 

Less than 1 17.70 

1-4 1.14 

5-9 0.50 

10-14 .52 

15-19 .92 

20-24 1.09 

25-29 1.20 

30-34 1.49 

35-39 1.91 

40-44 2.91 

45-49 4.89 

50-54 9.99 

55-59 16.73 

60-64 25.31 

65-69 40.13 

70-74 60.21 

More than75 111.25 

5.3. Goodness of Fit Test 

To check the validity of the fitted model, Kolomgrov-

Simrnov goodness of fit test is performed for the data set by 

the following steps, 

1) Normality test using the Kolmogorov-Smirnov test. 

Goodness of fit test "Do the �Í values follow the POGE-G 

distribution 

2) The test of moderation 

This test is performed on the variable: death rates �Í using 

the Kolmogorov-Smirnov test, which assumes the following 

assumptions: 

H0: �Í data is not characterized by moderation 

H1: �Í data is characterized by moderation 

Test statistics D	 = max‖�0��� − �1���‖ = 	0.50  

Where �0��� is the cumulative frequency distribution at 

H0 and �1��� is the cumulative frequency distribution at H1 

and the calculated p-value value is shown as follows 

P-value <0.03663 

It appears from this test that the calculated value of p-value 

is less than 5% and thus cannot accept H0 and accept the H1 

meaning that �Í data is characterized by moderation. 

5.4. Calculating the Reconciliation Quality of Ð¦ Data 

The values of failure rates and ÑÍ mortality rates using by 

using the hazard rate (2.3) of the Power Odd Generalized 

Exponential Gompertz distribution is calculated, the accuracy 

of the true �Í mortality rates also calculated from the factual 

data in Table 4. 

Table 4. The calculated values of ÑÍ and the corresponding values of h (x) are displayed as well as the �Í calculation. 

Age Ð¦  h(x) ÒÓ 

0 0.01770 0.002504330 0.002501197 

1 0.00457 0.002090119 0.002087936 

5 0.00198 0.001903248 0.001901438 

10 0.00207 0.001807650 0.001806017 

15 0.00366 0.001761429 0.001759879 

20 0.00435 0.001746986 0.001745461 

25 0.00479 0.001755709 0.001754168 

30 0.00596 0.001783072 0.001781483 

35 0.00760 0.001826695 0.001825027 

40 0.01156 0.001885463 0.001883686 

45 0.01938 0.001959103 0.001957185 

50 0.03920 0.002047965 0.002045870 

55 0.06476 0.002152916 0.002150600 

60 0.09636 0.002275297 0.002272710 

65 0.14858 0.002416928 0.002414009 

70 0.21496 0.002580142 0.002576816 

5.5. Graphical Description for Mortality Rates 

After calculating mortality rates numerically by using (3) and assumed a different values for the parameter of POGE-G 

distribution it can be describing the �Í and ÑÍ graphically as follows. 
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Figure 5. The failure function and the expected mortality rates for POGE-G distribution at (α = 0.001, β = 0.5, λ = 0.025, γ=1.1, c = 0.035). 

Figure 5 shows that: 

1) It is clear that the failure rate function has the property 

of the U-shape. 

2) The failure rate function increasing as the age increasing. 

Through this presentation, it can be noted that this 

distribution can be applied to population data. 

5.6. The Estimation of the Parameter Using Different 

Methods 

After checking the validity of this data to the model by 

using Kolomgrov-Simrnov goodness of fit test (KS) (with its 

P-value=0.093), it can be use this data to estimate the 

parameter of the POGE-G distribution by using ML, MPS 

and Bayesian methods of estimation which considered in 

chapter three. All the results are listed in Table 5. Depending 

on that the parameter c is known, it can be noted that the 

results of the three methods seems to be approximately. 

Table 5. ML, MPS and Bayesian Estimates with its Ks, of the model 

parameters �
, �, �� for the data. 

Methods Parameters Estimates 

ML 

α 2.511 

β 195.49 

λ 1.475 

γ 0.074 

MPS 

α 0.093 

β 4.851 

λ 3.898 

γ 0.074 

Bayesian 

α 0.116 

β 4.197 

λ 3.699 

γ 0.083 

6. Conclusion 

In this paper, we have studied the problem of estimation 

of the power odd generalized exponential-Gompertz 

(POGE-G) distribution from classical and Bayesian 

viewpoints. We derived maximum likelihood estimates, 

maximum product spacing and associated asymptotic 

confidence interval estimates for the unknown parameters 

of a POGE-G distribution. Then, we calculated Bayes 

estimates and the corresponding HPD interval estimates 

under informative priors. Our simulation study indicates 

that the performance of Bayes estimates is better MLE 

estimates. Though we have considered squared error loss 

function under Bayesian set up, yet other loss functions can 

also be considered. Through this presentation, it can be 

noted that this distribution can be applied to population data. 

The present work can also be extended to design of 

progressive censoring sampling plan and other censoring 

schemes can also be considered. 
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