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Abstract: This paper aims at determining if the assumed fundamental structure of the error component (unit mean and 

constant variance) is maintained after the square root transformation of a Weibull-distributed error component of a 

multiplicative model and also to investigate what happens to variance of the transformed and untransformed in terms of 

equality and non-equality. Considering the possibility that the error component of a Multiplicative Error Model (MEM) can be 

a Weibull distribution (W (σ, n)); σ and n are shape and scale parameters respectively) and the need for data transformation as a 

popular remedial measure to stabilize the variance of a data set prior to statistical modeling, this paper investigates the impact 

of the square root transformation on the mean and variance of a Weibull-distributed error component of a MEM. The mean and 

variance of W (σ, n) and those of the square root transformed distributions are calculated for σ= 6, 7,.., 99, 100 with the 

corresponding values of n for which the mean of the untransformed distribution is equal to one. The fitted MEM (2,0) under 

the square root transformation gave a better fit than the original fitted MEM (2,0). The paper concludes that the square-root 

transformation would yield better results as they reveal constancy in variance when using MEM with a Weibull-distributed 

error component and where data transformation is deemed necessary to stabilize the variance of the data set. 
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1. Introduction 

1.1. Rationale 

Multiplicative Error Models (MEMs) were originally 

introduced as Autoregressive Conditional Duration (ACD) 

models by Engle R. F and Russell J. R… [8] and were 

generalized to any non-negative time varying event 

process by Engle, R. [7]. MEMs provide an observation-

driven approach for dynamic non-negative variables; see 

the study conducted by Ramachandran K. M. and Tsokos 

C. P …[16]. 

Let { }tx  be a discrete time process defined on [ )0, +∞ , 

N,t ∈  where N is the set of N natural numbers and let 1tψ −

be the information available for forecasting tx . Brownlees et 

al …[4] show that { }tx follows a MEM if it can be expressed 

as 

t t tx µ ε=                                      (1) 

where conditionally on 1tψ − , tµ is a positive quantity that 

evolves deterministically according to a parameter vector θ , 

with 

( )1,t tµ µ θ ψ −=                                (2) 

tε
 
in (1) is a random variable with probability density 

function pdf defined over a [ )0, +∞  support, with ( ) 1tE ε =
and unknown constant variance. 

2
1| ~ (1, ),t t Dε ψ σ+

−                         (3) 

Irrespective of the specification of the function (.)µ and of 



95 Onyemachi Chris Uchechi:  Assessing the Impact of Square Root Transformation on Weibull-Distributed   

Error Component of a Multiplicative Error Model 

the distribution D +  (any distribution) in equations (1), (2) 

and (3) according toEngle R. F … [7] must evolve 

1( | )t t tE x ψ µ− =                            (4) 

2 2
1( | )t t tV x ψ σ µ− =                         (5) 

The assumption according to … [8] is that the time 

dependence in the durations can be subsumed in their 

conditional expectations (4), in such a way that |t tx ψ  is 

independent and identically distributed. 1tψ − denotes the 

information set available at time 1t − . 

No doubt the realization of (3) supports such distributions 

as Weibull, Gamma, Log Normal according to … [1, 3, 12]. 

In this case, tε  are independently and identically distributed 

as a Weibull (1, )α probability distribution, as tψ are 

proportional to the conditional expectation of tx  as explained 

below 

1 1t t txψ α βψ− −= +                           (6) 

with the constraints on the coefficients as follows: 0,β ≥
0α ≥  and 1.α β+ <  The conditional lag in time is 

guaranteed by the first three conditions while the last 

condition ensures non-negativity. 

The property (4) provides us with a link on (6) which gives 

1
1t tψ µ

α
 = Γ + 
 

                            (7) 

where (.)Γ is the gamma function. If 1α = , the Weibull 

distribution becomes an exponential one. Here, .t tµ ψ=  

The property of (3) also in realization support the left 

truncated normal distribution whose effect on the error 

component of the multiplicative time series has been 

studied via the logarithm, inverse, square, inverse square, 

square root transformations in their various studies …[6, 

9, 10, 13, 14]. 

A random variable X  has a Weibull distribution

~ ( , )X Weibull nα , with shape parameters ( 0),α > and scale 

parameter ( 0)n > . The probability density function of a 

standardized Weibull random variable X according to Tsay, 

R … [18] is: 

11 1
1 exp 1 , 0

( | )

0

x y x
f x

otherwise

α α
αα

α α α
−

          Γ + − Γ + ≥        =          


 (8) 

where (.)Γ is the usual Gamma function. The mean and 

variance of X are ( ) 1E X =  and 

( ) ( ) 2
( ) 1 2 1 1 1Var X α α = Γ + Γ + −   respectively. 

The Weibull distribution is used in reliability and survival 

analysis to model the lifetime of objects, organisms and 

service time. 

1.2. Research Problem 

When distributions are non-normal (e.g., highly skewed, 

multimodal, or heavily-tailed), the ability to identify a viable 

probability distribution using the normal theory approach is 

reduced. This is because, under normal theory Statistics, the 

probability distributions are symmetric and more or less bell-

shaped and, when distributions are non-normal, especially in 

the ways listed above, the probability distribution is distorted 

which effects the estimation of means and variances leading 

to erroneous statistical results. 

1.3. Research Importance 

Data transformations are useful in many aspects of 

statistical work, often for stabilizing the variance of the data. 

Non constant variance is quite common in time series data, 

for example in financial time series analysis the problem is 

often to model non-negative valued processes. This occurs 

when considering variables such as volumes, trades 

durations, realized volatility, daily price range, etc. 

To enhance approaches to forecasting, data 

transformation seems to be the most frequent reason for 

researchers to make the distribution of their data “normal” 

and thus fulfill one of the assumptions of conducting a 

parametric means comparison. Other reasons for data 

transformation include more informative graphs of the 

data, better outlier identification and increasing the 

sensitivity of statistical tests. Succinctly put, data 

transformation is a mathematical operation that changes 

the measurement scale of a variable. According to 

Chartfield, if there is trend in the series and the variance 

appears to increase with the mean, then it may be 

advisable to transform the data [5]; and in particular – if 

the standard deviation is directly proportional to the mean, 

a logarithmic transformation is appropriate. He proceeded 

to outline the following reasons for transformation (i). 

variance stabilization (ii). to make the seasonal effect 

additive and (iii) to normalize the data. 

A successful transformation is achieved when the 

desirable properties of a data set remains unchanged after 

transformation. These basic properties or assumptions form 

the object of interest for this study and include; (i) Unit 

mean and (ii) constant variance. Iwueze pioneered a work 

on the implications of logarithmic transformations on the 

error component of the multiplicative model a [10]. 

Interestingly, the work elicited spontaneous interest in this 

area of time series analysis, thus adding to the litany several 

works including, …. [6, 9, 13, 14]. 

1.4. Motivation 

The purpose of this study is to determine if the assumed 

fundamental structure of the error component (unit mean and 

constant variance) is maintained after the power 

transformation and also to investigate what happens to 

variances of the transformed and untransformed (i.e., 
2
1σ and 

2
2σ ) in terms of equality and non-equality. To examine this, 
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the Weibull distribution, a non-normal distribution whose 

distributional characteristics fit 
2~ (1, )N σ  is studied 

considering its flexibility and adaption with asymptotic 

properties relative to multiplicative error modeling. 

1.5. Research Objectives 

To investigate the use of square root transformation to 

transform Weibull data for evaluating its effect on the 

error component of a multiplicative error model, the pdf

of the transformed distribution, thk uncorrected moments 

of the transformed, expression for the mean and variance 

of the transformed transformation, relative change in mean 

and variance of the transformed and untransformed 

distribution tests of model fit were reviewed. The 

procedure adopts the following algorithm as its aims and 

objectives: 

i. pdf of the transformed distribution is obtained 

ii. thk uncorrected moments of the transformed 

iii. Expression for the mean and variance of the 

transformed distribution 

iv. Relative change 

2. Materials and Methods 

2.1. The thP  Transformed Weibull-Distributed Random 

Variable 

Using the power transformation as a form of 

transformation that is frequently used in statistical analysis 

defined as follows [15]: 

X , p 0
Y

log(X), p 0

P ≠= 
=

                             (9) 

Suppose
p

t tY X= , then 

1

p
t tX Y=                                     (10) 

and 

1 1
1 11 1p pt

t t
t

d x
J y y

d y p p

− −
= = =             (11) 

whereJ  is the absolute value of the Jacobian of the p-th 

power transformation. The pdf of tY , denoted as ( )tf y  is 

then obtained as 

( )
1

p t
t t t

t

d x
f y f x y

d y

 
 = =
 
 

[16].                    (12) 

Now, suppose the error component (et) of a Multiplicative 

Error Model (MEM) is assumed to follow a Weibull 

distribution, then the probability density function pdf  of et 

denoted as f(et) is given as follows 

( )
σ - 1 σ

t t
t t

e eσ
f e = exp - , e > 0

n n n

       
     

      

  (13) 

whereσ and n are the shape and scale parameters 

respectively. The mean (E(et) = 
teµ ) and variance 

( ( )
t

2
t eVar e = σ ) of et are given as 

( ) ( )
t

1
t e σ

E e = µ n Γ 1 +=                       (14) 

and 

( ) ( )
t

2
2 2 2 1

e σ σ
σ = n Γ 1+ - n Γ 1+ 

 
               (15) 

Using (12) and (13), we obtain the pdf  of the p-th 

transformed Weibull distribution denoted by ( )f yt  as 

( )
1

σ p
p

σσ
-1 y

t tn

σ 1
f y = y exp - , y > 0

p n

     
          

   (16) 

To establish that ( )f yt is a proper pdf , we have to show 

that ( )
0

1t tf y dy

∞

=∫ . We now proceed as follows; 

( )
0

t tf y dy

∞

=∫
1

σ p
p

σσ
-1 y

n

0

σ 1
y exp

p n
td y

∞      −          
∫  (17) 

In (17) if, 

1
py

Z
n

σ
 
 =
 
 

                                 (18) 

we obtain 

p

σp

σ

-1p
p

t t

p n z
y = n z and dy = d z

σ
             (19) 

Now substituting (18) and (19) into (17), we have that 

( )
0 0

1Z
t tf y dy e d z

∞ ∞
−= =∫ ∫  

which shows that (17) is a proper pdf . 

The pdf  of the transformed Weibull variable under the 

square root transformation is thus 

( ) ( )
σσ 2

2σ - 1 t
t t t

y1
f y = 2σ y exp - , y > 0

n n

     
          

  (20) 
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2.2. The K-th Uncorrected Moment of Yt [E(Y
k
)] 

The mean and higher-order raw moments can be used to 

describe the distribution of any random variable fairly well. 

Even the celebrated Central Limit Theorem which forms the 

basis for inferential statistics rely on moments, just to 

mention a few importance of moments in probability and 

statistics. The moments of the transformed Weibull 

distribution were derived: 

The thK uncorrected moment of tY  denoted as ( )k
tE Y  is 

obtained as follows 

( ) ( )
1

σ p
p

σσ
- 1 yk k k

t t t t tn

0 0

σ 1
E Y = y f y d y = y y exp - d y

p n

∞ ∞      
          

∫ ∫  

=

1
σ p
p

σσ
+k - 1 y

tn

0

σ 1
y exp - d y

p n

∞      
          

∫                                                               (21) 

Inserting the substitutions in (15) and its corresponding results in (16) into (17), gives 

( )k
tE Y = { } ( )σ

p
1+k - 1

1 1

0 0

σ
exp - d

p

p
p kp p

p pk zp n z
n n z z z n z e dz

σ
σσσ

σ

∞ ∞−
+ −− −  = 

 ∫ ∫  

= 
pk p k

n Γ 1+
σ

 
 
 

                                                                              (22) 

When k = 1, 

( ) p p
n Γ 1+

σ
tE Y

 =  
 

                                                                            (23) 

and k = 2 yields 

( )2 2p
t

2p
E Y = n Γ 1+

σ

 
 
 

                                                                        (24) 

thus 

( ) ( )
2

t

2 2
y t tE Y E Yσ  = =   =

2

2p p2p p
n Γ 1+ - n Γ 1+

σ σ

    
    

    
                                      (25) 

The expressions for the mean and variance under the square root transformation are given by 

( )tE Y  = tµ = 
1
2

1
n Γ 1+

2 σ

 
 
 

                                                                   (26) 

and 

t

2
yσ =

1
2

2

1 1
n Γ 1+ - n Γ 1+

σ 2σ

   
   

     
                                                           (27) 

respectively. 

3. Numerical Applications 

The data is on the daily closing stock prices of the 

Egyptian stock index (EGX 30) and the data was obtained 

from DataStream. The data only include official trading days 

(Monday-Friday) except public holidays and it span from 

04/08/2004 to 13/04/2018 (3051 trading days). 

3.1. Method of Data Analysis 

In analyzing the data of this study, the following procedure 

shall be applied 

i) Make a plot of the data 

ii) Test for homogeneity of variance 

iii) Assess the appropriate data transformation and 
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application of transformation 

iv) Fit the appropriate MEM model to the original data set 

v) Fit the appropriate MEM model to the transformed data 

vi) Residual analysis. 

Plot of the data 

The plot of the data is given in Figure 1 and we could 

quickly observe a trend pattern, a vigorous up and down 

movement in the plot and evidence of non-constant variance.  

 
Figure 1. A time series plot of the Egyptian stock index. 

3.2. Testing for Homogeneity of Variance 

Here the Levene’s and Barttlet’s tests would be employed 

to test for homogeneity of variance by grouping the data set 

into months of 25 trading days leaving only the last group 

with 26 trading days. The results of the tests are given in 

Figure 2. The p-values for the two tests are both 0.000 which 

suggest that the variance of the data set is not constant and 

thus there is need for a variance-stabilization transformation. 

 
Figure 2. Test for equal variances using the Bartlett’s and Levene’s test. 

3.3. Assessment of the Appropriate Data Transformation 

Here we would employ the Bartlett’s technique as applied 

by Akpant, A. C and Iwueze, I. S …[2]. Since the data set is on 

daily basis, the technique involves partitioning the data into 

groups of fairly equal sizes. For this purpose, the data is 

grouped into months of 25 trading days leaving only the last 

group with 26 trading days as was done earlier. This technique 

of transformation involves regressing the logarithm of the 

groups’ standard deviations against the logarithm of the 

groups’ means and obtaining the regression line. The value of 
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the slope coefficient ( λ̂ ) determines the appropriate 

transformation to be adopted. The groups’ means and standard 

deviation and their natural logarithms are given in Table 1 

while the fitted line plot of the natural logarithm of the groups’ 

standard deviations (Loge ( )ˆ
iσ ) against the natural logarithm 

of the groups’ means (Loge ( iX )) is given in Figure 3. 

Table 1. Groups’ means and standard deviations of the Egyptian stock index. 

Group Mean ( iX ) Standard Deviation  Loge ( iX ) Loge  

1 1701.4 62.455 7.43924 4.13445 
2 2076.5 64.762 7.63845 4.17072 

3 2304.5 102.415 7.74262 4.62903 

4 2454.0 56.816 7.80548 4.03982 
5 2764.7 183.934 7.92469 5.21458 

6 3553.6 176.178 8.17573 5.17149 

7 4133.9 207.430 8.32698 5.33479 
8 4128.7 177.503 8.32571 5.17899 

9 4282.2 105.169 8.36223 4.65557 

10 4891.7 112.297 8.49530 4.72115 
11 4782.6 102.160 8.47275 4.62654 

12 5052.5 193.978 8.52763 5.26775 

13 5545.9 82.691 8.62081 4.41512 
14 5772.4 146.418 8.66085 4.98647 

15 6277.4 326.871 8.74472 5.78957 

16 7619.2 334.343 8.93843 5.81217 
17 6721.9 316.493 8.81313 5.75730 

18 6779.8 207.856 8.82171 5.33685 

19 6062.5 574.097 8.70987 6.35280 
20 5025.3 293.460 8.52223 5.68174 

21 5362.4 334.051 8.58716 5.81129 

22 5984.6 160.888 8.69695 5.08071 
23 6321.7 90.386 8.75175 4.50408 

24 6445.6 86.277 8.77115 4.45756 

25 6687.4 113.900 8.80799 4.73532 
26 6957.6 180.001 8.84759 5.19296 

27 7097.0 221.669 8.86743 5.40118 

. . . . . 

. . . . . 

. . . . . 

120 6299.7 513.776 8.74825 6.24179 
121 6061.0 142.291 8.70962 4.95788 

122 7328.3 336.112 8.89950 5.81744 

 

Figure 3. Fitted line plot of the natural logarithm of the groups’ standard deviations (Loge ( )ˆiσ ) against the natural logarithm of the groups’ means (Loge ( iX )). 
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Figure 4. ACF of the Egyptian Stock Index. 

 
Figure 5. PACF of the Egyptian Stock Index. 

From the fitted line plot, the value of the slope ( λ̂ ) is 

0.6057 which is not statistically different from 0.5 as 

suggested by the test below; 

H0: λ̂ ≅0.5 against HA: λ̂ ≠0.5 

The test statistic is 

cal

0.6057 - 0.5000
Z = = 0.7687

0.1375
 

At 5% level of significance Zcal = 0.7687 < Ztabulated 

=1.95 and thus there is no evidence to reject the null 

hypothesis and therefore λ̂ ≅0.5 would be adopted which 

by Bartlett’s technique as applied by Akpanta and Iwueze, 

affirms that the square root transformation is the most 

appropriate [2]. 

3.4. Fitting the Appropriate MEM to the Original Data Set 

The Plot of the Autocorrelation function, ACF Figure 4 

shows a gradual exponential decay and that of the Partial 

Autocorrelation Function, PACF Figure 5 shows a cut-off at 
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lag 2 suggesting that we can fit MEM (2,0) to the data. The 

MEM (2,0) can be specified as 

�� = �� + ����	� + �
��	
���             (28) 

The maximum likelihood estimate of the coefficients of 

the MEM (2,0) model in Equation 1 with their corresponding 

standard errors in parenthesis 

are �̂ = 6431.839�1363.969���� = 1.1635	�0.0179�  and 

��
 = −0.1647	�0.0179� . The standard errors of the 

parameters are smaller than the values of the coefficients and 

this implies that the parameters are statistically significant. 

3.5. Fitting the Appropriate MEM to the Transformed Data 

The plot of the square root- transformed is given in Figure 

6 while the ACF and PACF are given Figures 7 and 8 

respectively. It could be seen from Figure 6 an apparent 

reduction in the fluctuation of the transformed time series 

compared to the original time series. Figure 7 shows a 

gradual exponential decay and Figure 8 shows a cut-off at lag 

2 suggesting that we can once again fit the MEM (2,0) in 

Equation 1 to the square root transformed data. 

Repeating the analysis, gives the maximum likelihood 

estimate of the coefficients of the MEM (2,0) model with 

their corresponding standard errors in parenthesis are �̂ =

82.4136�29.1944���� = 1.1615�0.0179�  and ��
 =

−0.1622�0.0179�. The standard errors of the parameters are 

smaller than the values of the coefficients and this implies 

that the parameters are statistically significant. 

 

Figure 6. A time series plot of the square –root-transformed Egyptian stock index data. 

” 

Figure 7. ACF of the square root transformed data. 
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Figure 8. PACF of the square root transformed data. 

4. Residual Analysis 

The mean and variance of the residual series for the 

untransformed data are 1.0004 and 2.8 × 10	�  respectively 

while the mean and variance of the residual series for the 

square-root-transformed data are 1.0001 and 7.1 × 10	� 

respectively (estimated from MINITAB software). 

Figure 9(a) shows the scatter plot of the error component 

of the fitted MEM (2,0) with the original dataand from the 

plot it can be seen that there is no obvious pattern in the plot 

and the error term appears to be pretty much centred around 

1 (red line) thus, suggesting unit mean and constant variance 

for the error term. 

 
Figure 9. Scatter plot of the error term of the fitted MEM (2,0) model fitted to the original data (a) and the scatter plot of the error term of the fitted MEM 

(2,0) model fitted to the transformed data (b). 
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Figure 10. Histogram for the distribution of the variance of �� computed from non-overlapping windows comprising of 101 windows of size 30 and a window 

of size 21 for the daily stock prices of the Egyptian Stock Market superimposed with the Weibull distribution (a) and by using the square root transformed data 

in (b). 

The constant variance assumption for ��  can further be 

verified by testing the null  !  that��  is a stationary time 

series versus the alternative  � that�� is not a stationary time 

series and we can carry out this test by using the Cox-Stuart 

test, the turning Point test and the KPSS test and the p-values 

of these tests are 0.4734, 0.7506 and 0.1000, respectively as 

the p-value>0.05 confirms that �� has a constant variance and 

the overall variance was calculated as 2.8 × 10	�. Also, the 

unit mean assumption for ��  can further be verified by 

performing a one sample t-test by testing the null  ! that the 

mean of��  is equal to 1 versus the alternative  �  that the 

mean of ��  is not equal to 1. The exact mean for �� was 

calculated as 1.0004 and the t-test result yields a p-value of 

0.1923 (>0.05) suggesting that��has a unit mean as obtained 

by MINITAB software. 

Recall that 
2

1| ~ (1, )t t Dε σ+
−Ψ  and that the distribution 

of D +  has support on [0,∞�  so to investigate this, some 

non-overlapping windows for �� was first constructed 

resulting to 102 windows where 101 of the window-lengths 

are equal (size 30) and just one window is of length 21 and 

calculated their corresponding variances and in the end had a 

total of 102 samples of variance. The histogram of the 

variance is shown in Figure 10(a). The Weibull distribution 

was fitted to the sample of 102 variances by the method of 

MLE and the estimates of the parameters are %& = 1.2397 

and '( = 3.0 × 10	� and the p-value of the Kolmogorov 

Figure 10 -Smirnoff goodness-of-fit test for the fitted Weibull 

distribution is 0.1699 (>0.05) thus, indicating a decent fit of 

the Weibull distribution for the sample of variances (see 

Figure 10(a)). It is clear from Figure 10(a) that the Weibull 

distribution provides a good fit for .D+  

Figure 9(b) shows the scatter plot of the error component 

of the fitted MEM (2,0) with the square-root-transformed 

dataand from the plot we can see that there is no obvious 

pattern in the plot and the error term appears to be pretty 

much centred around 1 (red line) thus, suggesting unit mean 

and constant variance for the error term. 

The constant variance assumption for �� can also be further 

verified by testing the null  ! that�� is a stationary time series 

versus the alternative  � that �� is not a stationary time series 

and we can carry out this test by using the Cox-Stuart test, the 

turning Point test and the KPSS test and the p-values of these 

tests are 0.4125, 0.8172 and 0.1000, respectively thus the p-

value>0.05 confirms that ��  has a constant variance and the 

overall variance was calculated as 7.1 × 10	�. Also, the unit 

mean assumption for �� can further be verified by performing a 

one sample t-test by testing the null  ! that the mean of��is 

equal to 1 versus the alternative  � that the mean of��is not 

equal to 1. The exact mean for��was calculated as 1.0001 and 

the t-test result yields p-value of 0.2073 (>0.05) suggesting 

that��has a unit mean. 

Again, recall that 
2

1| ~ (1, )t t Dε σ+
−Ψ  and that the 

distribution of D +  has support on [0,∞�  so to investigate 

this, some non-overlapping contiguous windows for ��were 

first constructedresulting to 102 windows where 101 of the 

window lengths are equal (size 30) and just one window is of 

length 21 and their corresponding variances were calculated, 

thus spanning a total of 102 samples of variance at the end. 

The histogram of the variance is shown in Figure 10 (b). The 

Weibull distribution was fitted to the sample of 102 variances 

by the method of MLE and the estimates of the parameters 

are %& = 1.2337  and '( = 7.6 × 10	�and the p-value of the 

Kolmogorov-Smirnoff goodness-of-fit test for the fitted 

Weibull distribution is 0.2123 (>0.05) thus, indicating a 

decent fit of the Weibull distribution for the sample of 

variances (see Figure 10(b)). It is seen from Figure 8(b) that 

the Weibull distribution provides a good fit for D + . 

To compare the fitted MEM model under the two different 

data structures, the use of the mean error (ME), root mean 
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square error (RMSE), mean absolute error (MAE), mean 

percentage error (MPE), and mean absolute percentage error 

(MAPE) and the Akaike information criterion (AIC) to check 

which of the models performed better are made. The model 

with consistently smaller value of the error measures and the 

AIC value is considered to be better than the other one. 

Table 2. Estimates of various goodness of fit measures for the fitted MEM (2,0) model for the original data and the square root transformed data. 

Data ME RMSE MAE MPE MAPE AIC 

Original 1.5273 104.7354 71.7795 0.0110 1.1668 37055.66 

Transformed 0.0100 0.6515 0.4510 0.012 0.5822 6058.45 

 

From Table 2, it is clear that the fitted MEM (2,0) model 

under the square root transformed data gave a better fit than 

the fitted MEM (2,0) model under the original data. In 

conclusion, the square root transformation reduced the 

variance from 2.8 × 10	� to 7.1 × 10	� while the unit mean 

assumption remains unchanged. That is the unit-mean is 

unaffected by the transformation while there is a reduction in 

variance as established by the theory. 

5. Conclusion 

In this study the probability density function of the 

square root transformed two-parameter Weibull 

distribution and their respective distributional properties 

were derived. The k-th uncorrected moment, for the 

second, third and fourth moment as well as their 

expectation variances were obtained. The findings 

established the following main results that decreasing the 

value of scale parameter is meaningful and effective for 

the square root transformation. The study confirmed 

consistence of the unit mean and constant variance 

assumption in the transformed and untransformed dataset 

of a Weibull distributed error component of the 

multiplicative error component. The fitted MEM (2,0) 

under the square root transformed data gave a better result 

than the original fitted MEM (2,0). In conclusion, the 

square root transformation reduced the variance from 2.8

x 410− to 7.1 x 510−  whereas the unit-mean is unaffected 

by the transformation while there is a reduction in 

variance as established. 

6. Recommendation 

The Weibull distribution has been shown to be very flexible in 

modeling various types of lifetime distribution with monotone 

failure rates, as data transformation is proven necessary tool to 

stabilize variance in statistical analysis. Therefore, from this 

study the following recommendations are made: 

The choice of square root transformation is deemed fit to 

transforming the Weibull distributed random variable given a 

multiplicative error model. 

More research should be conducted to investigate other 

mixtures of the Weibull class of distributions considering its 

known flexibility and applications for modeling lifetime 

events. More research should be conducted on the application 

of the statistical results of this study on various fields, 

especially quality assurance, environmental and engineering 

applications. 
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