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Abstract: For modeling count data, the Poisson regression model is widely used in which the response variable takes non-
negative integer values. However, the presence of strong correlation between the explanatory variables causes the problem of 
multicollinearity. Due to multicollinearity, the variance of the maximum likelihood estimator (MLE) will be inflated causing 
the parameters estimation to become unstable. Multicollinearity can be tackled by using biased estimators such as the ridge 
estimator in order to minimize the estimated variance of the regression coefficients. An alternative approach is to specify exact 
linear restrictions on the parameters in addition to regression model. In this paper, the restricted Poisson ridge regression 
estimator (RPRRE) is suggested to handle multicollinearity in Poisson regression model with exact linear restrictions on the 
parameters. In addition, the conditions of superiority of the suggested estimator in comparison to some existing estimators are 
discussed based on the mean squared error (MSE) matrix criterion. Moreover, a simulation study and a real data application are 
provided to illustrate the theoretical results. The results indicate that the suggested estimator, RPRRE, outperforms the other 
existing estimators in terms of scalar mean squared error (SMSE). Therefore, it is recommended to use the RPRRE for the 
Poisson regression model when the problem of multicollinearity is present. 

Keywords: Poisson Regression, Multicollinearity, Ridge Regression Estimator, Restricted Maximum Likelihood Estimator, 
Restricted Ridge Regression Estimator 

 

1. Introduction 

In a Poisson regression, the maximum likelihood estimator 
(MLE) can be affected by multicollinearity problem in which 
inflates the variance of the estimates, and hence, the estimate 
of the parameters will be unstable (Kibria et al [14]). To deal 
with multicollinearity, many biased estimators have been 
suggested in linear regression model such as, the ridge 
regression estimator (RRE) by Hoerl and Kennard [10], the 
Liu regression estimator (LRE) by Liu [15], the Liu-type 
regression estimator (LTRE) by Liu [16], the two-parameter 
estimator (TPE) by Özkale and Kaçiranlar [24], and the 
modified Jackknifed ridge regression estimator (MJRRE) by 
Batah et al [7]. Further, in Poisson regression model, 
Månsson and Shukur [20] suggested the Poisson ridge 
regression estimator (PRRE), Månsson et al [19] suggested 
the Poisson Liu regression estimator (PLRE), Türkan and 
Özel [30] suggested the modified Jackknifed Poisson ridge 
regression estimator (MJPRRE), Asar and Genç [6] 
suggested the two-parameter Poisson estimator (TPPE), and 

Alkhateeb and Algamal [3] suggested the Jackknifed Poisson 
Liu-type regression estimator (JPLTRE). For more details on 
biased estimators, one can refer to Muniz and Kibria [22], 
Kibria et al [13], Inan and Erdogan [11], Asar [4], Kibria et al 
[14], Şiray et al [29], Alanaz and Algamal [1], Algamal [2], 
and Qasim et al [25]. 

Another technique for dealing with multicollinearity is to 
include exact linear restrictions for the parameters in addition 
to regression model. Duffy and Santner [9] presented the 
restricted maximum likelihood estimator (RMLE) in logistic 
regression model. Then, by combining the RMLE and the 
biased estimators, many restricted biased estimators were 
presented in the context of logistic regression model such as, 
the restricted logistic ridge regression estimator (RLRRE) by 
Saleh and Kibria [28], the restricted logistic Liu regression 
estimator (RLLRE) by Şiray et al [29], and the restricted 
logistic Liu-type regression estimator (RLLTRE) by Asar et 
al [5]. Recently, Månsson and Kibria [17] introduced both the 
unrestricted and restricted Poisson Liu regression estimators 
for the Poisson regression model. 

This paper aims to suggest a new restricted estimator 
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named as, restricted Poisson ridge regression estimator 
(RPRRE) to handle the problem of multicollinearity in 
Poisson regression model by combining the RMLE and the 
PRRE, and compare the estimators considered in this paper 
with the suggested estimator through a simulation study and 
a real data application. 

The rest of this paper is planned as follows. In Section 2, 
the Poisson regression model specification and estimation are 
given. In Section 3, the restricted Poisson ridge regression 
estimator is suggested and its statistical properties are 
explained. In Section 4, mean squared error (MSE) matrix 
comparisons of the suggested estimator, RPRRE, and some 
existing estimators are derived. In Section 5, a simulation 
study is conducted to examine the performance of the 
suggested estimator according to the scalar mean squared 
error (SMSE) criterion. In Section 6, a real data is analyzed 
to clarify some of theoretical results. Finally, the conclusion 
is provided in Section 7. 

2. Poisson Regression Model 

Specification and Estimation 

For analyzing count data, the Poisson regression model is 
the most widely employed. It assumes that the mean and the 
variance are equal which is known as equidispersion. Let 
�� , 	 = 1, 2, … , �  is the count random variable that has a 
Poisson distribution with probability mass function as 
follows: 

�(�� = �� ; 	��) = ��������
��! , �� = 0, 1, 2, …            (1) 

where �� = ���	(x�!β) is the mean of the response variable ��, x� = (x�#, … , x�$)!  is i
th row of % , which is an � × (� + 1) 

matrix of � explanatory variables, and β = ((#, (), … , ($)! is 
a (� + 1) × 1 vector of regression coefficients. 

Using the maximum likelihood estimation method, one can 
estimate the Poisson regression coefficients by differentiating 
the log likelihood function with regard to β and solving them 
to zero. 
From (1), the likelihood function is given by 

* = ∏ ��������
��!

,�-) ,                                (2) 

Then, the log likelihood function is given as follows: 

ℓ(β) = ∑ ��,�-) ln(��) − �� − ln	(��!)              (3) 

= ∑ ��x�!β − ���	(,�-) x�!β) − ln(��!). 
From (3), the first partial derivative with regard to β is given 
as follows: 

3ℓ(4)
34 = ∑ (�� − ��)	x�,�-)                           (4) 

= ∑ (�� − ���(x�!β))x�,�-) , 

Since Equation (4) is nonlinear in β, therefore, the iterative 
weighted least squares (IWLS) algorithm can be used to get 

an appropriate solution. Then, the MLE of β can be obtained 
by 

β5678 = 9:)%!;<=> ,                              (5) 

where 9 = %!;<%, ;< = ?	@A[�̂�], and =>  is a column vector 

with ith element equals ln(�̂�) + ��:�E�
�E� . 

The statistical properties of MLE are 

FGβ5678H = β,                                  (6) 

IJKGβ5678H = LGβ5678H = 9:),                   (7) 

Consequently, the MSE and SMSE of β5678 are given by 

MSEGβ5678H = LGβ5678H + M(β5678)	M!(β5678)         (8) 

= 9:), 

where MGβ5678H is the bias vector of β5678. 

SMSEGβ5678H = NO[MSEGβ5678H]                       (9) 

= NO(9:)) = ∑ )
PQ

$
R-) , 

where SR is the jth eigenvalue of the matrix, 9. 

Since multicollinearity between the explanatory variables 
leads to inaccurate parameters estimation, and large variance 
for the estimates (Kibria et al [14]). Therefore, many other 
estimators have been suggested for Poisson regression to 
tackle this problem. One of the most important estimation 
approaches is to use biased estimators, among those, the 
Poisson ridge regression estimator (PRRE) by Månsson and 
Shukur [20]. 

The PRRE is defined as follows: 

β5TUU8 = (%!;<% + VW):)%!;<%	β5678           (10) 

= (9 + V	W):)9	β5678 

= XYβ5678, 

whereXY = (9 + V	W):)	9 , and V  is the biasing parameter 
known as the ridge parameter, V ≥ 0. 

The statistical properties of β5TUU8 are given by 

FGβ5TUU8H = F(XYβ5678)                     (11) 

= XYβ, 

IJKGβ5TUU8H = LGβ5TUU8H                       (12) 

= IJK(XYβ5678) 
= XY9:)XY!  

= (9 + VW):)9(9 + VW):), 

Then, the bias vector, MSE, and SMSE of β5TUU8 are given 
respectively by 

MGβ5TUU8H = FGβ5TUU8H − β                   (13) 
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= (XY − W)	β = [), (say) 

MSEGβ5TUU8H = LGβ5TUU8H + M(β5TUU8)	M!(β5TUU8) (14) 

= XY9:)XY! + [)[)!  
= (9 + VW):)9(9 + VW):) + [)[)! , 

SMSEGβ5TUU8H = NO[MSEGβ5TUU8H]                      (15) 

= ∑ PQ
(PQ\Y)]

$
R-) + V^ ∑ _Q

(PQ\Y)]
$
R-) , 

where R̀  is the j
th element of Q!β, and Q is an orthogonal 

matrix defined so that 
Q!9Q = Λ = ?	@A(S), … , S$);	S) ≥ ⋯ ≥	S$ > 0. 

An alternative technique to improve estimation duo to 
multicollinearity is to include prior information for the 
parameters as in form of exact linear restrictions in addition 
to regression model. The resulting estimator is called a 
restricted estimator. 

According to (1), assume that the following exact linear 
restriction is considered for the parameter vector, β 

e	β = ℎ,                                    (16) 

wheree is a g × (� + 1)  known matrix, and ℎ  is a g × 1 
vector of known constants. 

Then, the restricted maximum likelihood estimator 
(RMLE) according to Duffy and Santner [9] is as follows: 

β5U678 = β5678+9:)e!(e9:)e!):)(ℎ − eβ5678). (17) 

The statistical properties of β5U678 are 

F(β5U678) = β+9:)e!(e9:)e!):)(ℎ − eβ),      (18) 

IJKGβ5U678H = LGβ5U678H                                      (19) 

= 9:) − 9:)e!(e9:)e!):)e9:) 

= h, (say) 

Thus, the bias vector, MSE, and SMSEof β5U678 are given 
respectively by 

MGβ5U678H = FGβ5U678H − β                           (20) 

= 9:)e!(e9:)e!):)(ℎ − eβ) 
= [^,(say) 

MSEGβ5U678H = LGβ5U678H + M(β5U678)	M!(β5U678)   (21) 

= 9:) − 9:)e!(e9:)e!):)e9:) + [^[ !̂  

= h + [^[ !̂ , 

Following Şiray et al [29] and Månsson et al [18], the 
SMSE of β5U678 is as follows: 

SMSEGβ5U678H = NO(h + [^[ !̂)                      (22) 

= ∑ @RR + [R̂$
R-) , 

where @RR  is the jth diagonal element of the matrix Q!hQ, and 
[R is the jth element of the vector [ !̂Q. 

3. The Restricted Poisson Ridge 

Regression Estimator 

In this section, following (10) and (17), the restricted 
Poisson ridge regression estimator (RPRRE) is suggested and 
is defined by the following form: 

β5UTUU8 = (%!;<% + VW):)%!;<%β5U678           (23) 

= (9 + VW):)9	β5U678 

= XYβ5U678, 

where XY = (9 + VW):)9, V ≥ 0. 
The statistical properties of β5UTUU8 are given by 

FGβ5UTUU8H = F(XYβ5U678)                       (24) 

= XYβ, 

IJKGβ5UTUU8H = LGβ5UTUU8H                     (25) 

= IJK(XYβ5U678) 
= XYhXY! , 

MGβ5UTUU8H = FGβ5UTUU8H − β                   (26) 

= (XY − W)	β = [), 

Consequently, the MSE of β5UTUU8 is given as 

MSEGβ5UTUU8H = LGβ5UTUU8H + M(β5UTUU8)	M!(β5UTUU8) (27) 

= XYhXY! + [)[)! , 
Following Najarian et al [23], the SMSE of β5UTUU8 can be 

obtained by 

SMSEGβ5UTUU8H = NO(XYhXY! + [)[)!)                                (28) 

= ∑ PQ(PQ\Y:iQQ)]
(PQ\Y)j + V^ ∑ [_Q(PQ\Y:iQQ)

(PQ\Y)] ]^$
R-)

$
R-) , 

where ORR = ?	@A(k), and k = Q!e!(e9:)e!):)eQ. 

4. The Comparisons of the Estimators 

The superiority of the suggested estimator, RPRRE, over 
the estimators MLE, PRRE, and RMLE is compared in this 
section using the MSE matrix criterion. 

For two given estimators β5) and β5^, in the sense of MSE 
matrix, the estimator β5^ is superior to β5) if and only if 

∆(β5), β5^) = MSEGβ5)H − MSE(β5^) ≥ 0.         (29) 

The following Lemmas will be used in the comparisons 
among the estimators: 

Lemma 1: Assume that h  is a � × �  matrix, and M  is a 
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� × � matrix such that h > 0 and M ≥ 0. Then, h + M > 0. 
(Rao and Toutenburg [26]). 

Lemma 2: Assume that m and n are two matrices where 
m > 0,  and n > 0.  Then, m > n  if and only if 
Spqr(nm:)) < 1. (Rao et al [27]). 

4.1. RPRRE Versus MLE 

From (8) and (27), the difference is computed as 

∆)= MSEGβ5678H − MSEGβ5UTUU8H                (30) 

= 9:) − [XYhXY! + [)[)!] 
= m) − n), 

where m) = 9:) and n) = XYhXY! + [)[)! . 
Theorem 4.1. The RPRRE is superior to MLE if and only if 

the largest eigenvalue of n)m):), Spqr(n)m):)) be less than 

one. 

Proof. It is obvious to say that m) and XYhXY!  are positive 
definite matrices, and [)[)!  is non-negative definite matrix. 
Also, n) is positive definite matrix using Lemma 1. Further, 
according to Lemma 2, if Spqr(n)m):)) < 1 , then, m) −n) is a positive definite matrix where Spqr(n)m):))  is the 
largest eigenvalue of n)m):) . Therefore, the RPRRE, is 
superior to MLE if and only if Spqr(n)m):)) < 1. 

4.2. RPRRE Versus PRRE 

From (14) and (27), the difference is computed as 

∆^= MSEGβ5TUU8H − MSEGβ5UTUU8H                  (31) 

= XY9:)XY! − XYhXY!  

= XY(9:) − h)XY!  

= XY[9:)e!(e9:)e!):)e9:)]XY!  

= XYtXY! , 

where t = 9:)e!(e9:)e!):)e9:). 
Theorem 4.2. The RPRRE is always superior to PRRE. 

Proof. It is clear that XYtXY!  is positive definite. Hence, the 
RPRRE, is always superior to PRRE in the sense of MSE. 

4.3. RPRRE Versus RMLE 

From (21) and (27), the difference is computed as 

∆u= MSEGβ5U678H − MSEGβ5UTUU8H                         (32) 

= h + [^[ !̂ − [XYhXY! + [)[)!] 
= 9:) − t + [^[ !̂ − XY9:)XY! + XYtXY! − [)[)!  

= (9:) + XYtXY! + [^[ !̂) − (t + XY9:)XY! + [)[)!) 
= m^ − n^, 

where m^ = 9:) + XYtXY! + [^[ !̂ , and n^ = t +
XY9:)XY! + [)[)! . 

Theorem 4.3. The RPRRE is superior to RMLE if and only 

if the largest eigenvalue of n^m:̂) ,Spqr(n^m:̂))  be less 

than one. 

Proof. Since 9:) + XYtXY!  and t + XY9:)XY!  are positive 
definite, and [^[ !̂  and [)[)!  are non-negative definite 
matrices, then, n^ is a positive definite matrix using Lemma 
1. Further, it is obvious that m^ − n^  is positive definite 
matrix according to Lemma 2 if and only if Spqr(n^m:̂)) <
1, where Spqr(n^m:̂)) is the largest eigenvalue of n^m:̂). 
Therefore, the RPRRE, is superior to RMLE if and only if 
Spqr(n^m:̂)) < 1. 

5. Simulation Study 

In order to assess the performance of the suggested 
estimator, RPRRE over the MLE, PRRE, and RMLE by 
means of SMSE , a Monte Carlo simulation study is 
performed. The response variable of the Poisson regression 
model is generated by pseudo-random numbers from the 
Poisson distribution with �� = ���	(x�!β) , where β =
((#, (), … , ($)!  in which are chosen so that (# = 0 , 

∑ (R̂ = 1$
R-) , () = (^ = ⋯ = ($. 

According to McDonald and Galarneau [21] and Kibria 
[12], the following formula is considered to generate the 
explanatory variables: 

��R = 	 (1 − v^)w]x�R + vx�$\), 	 = 1, 2,… , �, y = 1, 2,… , �, (33) 

where v^  represents the coefficient of correlation between 
any two explanatory variables, and x�R  are independent 
pseudo-random numbers generated from the standard normal 
distribution. Four explanatory variables are generated by (33) 
with the values of v corresponding to 0.85, 0.95, and 0.99. 
The various values of sample size, � are used corresponding 
to � = 20, 50, and 100. Further, for the biasing parameter V, 
a set of values has been chosen so that V = 0.1, 0.3, 0.5, 0.7, 
0.9, and 1. Moreover, the following restriction is considered: 

e = [1, −2, 1, 0], ℎ = [0]. 
The simulation is repeated 1000  times for each 

combination of � , v , and V  and the simulated SMSE  is 
computed by 

SMSEGβ5H = )
)###∑ (β5i − β)!)###i-) (β5i − β).            (34) 

where β5i is any estimator used in the Oth replication. 
The results of the simulation are given in Tables 1-3. 

According to Tables 1-3, it can be noticed that the estimated 
SMSE  values of MLE, PRRE, RMLE, and RPRRE are 
increasing as the degree of correlation increases. In addition, 
with the increasing of sample size, the estimated SMSE 
values of all existing estimators are decreasing. Also, the 
increases in biasing parameter, V  values decrease the 
estimated SMSE values of PRRE and RPRRE. In all cases, 
the MLE has the worst performance (having the largest SMSE 
value). Moreover, for all selected values of �, v, and V, the 
RPRRE has the best performance compared to MLE, PRRE, 
and RMLE since it has the least SMSE value. Therefore, the 
RPRRE can be used in practical applications to tackle 
multicollinearity in Poisson regression. 
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Table 1. The estimated �m�F values of the MLE, PRRE, RMLE, and RPRRE when � = 20. 

� Estimator 
�      

0.1 0.3 0.5 0.7 0.9 1 

0.85 MLE 0.4711 0.4711 0.4711 0.4711 0.4711 0.4711 
 PRRE 0.4561 0.4292 0.4058 0.3852 0.3669 0.3585 
 RMLE 0.3875 0.3875 0.3875 0.3875 0.3875 0.3875 
 RPRRE 0.3764 0.3563 0.3386 0.3229 0.3089 0.3024 
0.95 MLE 1.2568 1.2568 1.2568 1.2568 1.2568 1.2568 
 PRRE 1.1259 0.9324 0.7973 0.6980 0.6221 0.5904 
 RMLE 0.9281 0.9281 0.9281 0.9281 0.9281 0.9281 
 RPRRE 0.8406 0.7104 0.6185 0.5500 0.4969 0.4745 
0.99 MLE 6.0979 6.0979 6.0979 6.0979 6.0979 6.0979 
 PRRE 4.5889 3.1808 2.5208 2.1322 1.8696 1.7660 
 RMLE 4.1389 4.1389 4.1389 4.1389 4.1389 4.1389 
 RPRRE 3.3794 2.5836 2.1632 1.8928 1.6971 1.6167 

Table 2. The estimated �m�F values of the MLE, PRRE, RMLE, and RPRRE when � = 50. 

� Estimator 
�      

0.1 0.3 0.5 0.7 0.9 1 

0.85 MLE 0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 
 PRRE 0.0715 0.0709 0.0704 0.0698 0.0692 0.0689 
 RMLE 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 
 RPRRE 0.0529 0.0524 0.0519 0.0515 0.0510 0.0508 
0.95 MLE 0.1831 0.1831 0.1831 0.1831 0.1831 0.1831 
 PRRE 0.1812 0.1775 0.1739 0.1706 0.1673 0.1657 
 RMLE 0.1251 0.1251 0.1251 0.1251 0.1251 0.1251 
 RPRRE 0.1237 0.1210 0.1184 0.1159 0.1134 0.1124 
0.99 MLE 0.8280 0.8280 0.8280 0.8280 0.8280 0.8280 
 PRRE 0.7737 0.6841 0.6130 0.5549 0.5064 0.4849 
 RMLE 0.7081 0.7081 0.7081 0.7081 0.7081 0.7081 
 RPRRE 0.6559 0.5710 0.5048 0.4517 0.4079 0.3889 

Table 3. The estimated �m�F values of the MLE, PRRE, RMLE, and RPRRE when � = 100. 

� Estimator 
�      

0.1 0.3 0.5 0.7 0.9 1 

0.85 MLE 0.0357 0.0357 0.0357 0.0357 0.0357 0.0357 
 PRRE 0.0355 0.0353 0.0350 0.0348 0.0345 0.0344 
 RMLE 0.0262 0.0262 0.0262 0.0262 0.0262 0.0262 
 RPRRE 0.0261 0.0259 0.0257 0.0255 0.0253 0.0252 
0.95 MLE 0.0916 0.0916 0.0916 0.0916 0.0916 0.0916 
 PRRE 0.0908 0.0893 0.0878 0.0864 0.0849 0.0842 
 RMLE 0.0648 0.0648 0.0648 0.0648 0.0648 0.0648 
 RPRRE 0.0643 0.0633 0.0623 0.0613 0.0604 0.0599 
0.99 MLE 0.4180 0.4180 0.4180 0.4180 0.4180 0.4180 
 PRRE 0.4110 0.3977 0.3851 0.3733 0.3621 0.3567 
 RMLE 0.2843 0.2843 0.2843 0.2843 0.2843 0.2843 
 RPRRE 0.2791 0.2692 0.2599 0.2512 0.2430 0.2392 

 

6. Real Data Application 

In this section, an application of real data of FIFA World 
Cup in 2018 due to https://www.fifa.com is considered. The 
data set involves 32 teams in which the response variable is 
defined as the number of won matches with 5 explanatory 
variables include the number of goals scored (%)), the number 
of goals conceded (%^), the number of clean sheets (%u), the 
number of shoots (%�), and the number of assists (%�). 

First, for checking the adequacy of fit the Poisson 
regression model to this data, the residual deviance test is 
used. The result of residual deviance is 11.121  with 27 
degrees of freedom and the � − �@�=� is 0.9970. It is clear 
that data set is well fitted to Poisson regression model. 

Also, the condition number (In ) is used to check for 
multicollinearity among the explanatory variables as follows: 

In = �P���
P���

,                                  (35) 

where Spqr  and Sp�,  are the maximum and minimum 
eigenvalues of the matrix, 9 respectively. The eigenvalues of 
the matrix, 9  are equal to 424434.6152 , 679.5312 , 
390.9653 , 213.8038 , and 28.3011  and the condition 
number is 122.4627 indicating that there is a high degree of 
multicollinearity in the data (Belsley et al [8]). The following 
correlation matrix shows the bivariate correlation between 
the explanatory variables as: 

��
��
� 1 0.34 0.63 0.81 0.780.34 1 −0.27 0.20 0.180.630.81
0.78

−0.27
0.20
0.18

1
0.59
0.57

0.59
1

0.99
0.57
0.99
1 ��

��
�
, 
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which one can see that there are some high bivariate 
correlations, namely, 0.99, 0.81, and 0.78. 

In addition, the restriction e = [1, −2, 1, 0, 0]  with 
ℎ = [0] is used. Moreover, the estimated SMSE values of the 
estimators MLE, PRRE, RMLE, and RPRRE are given in 
Table 4, and the coefficients of Poisson regression and 
corresponding standard errors (SE) of this estimators are 
given in Table 5 for different values of V. 

From Table 4, it is obvious that the estimator, RPRRE, has 
the lowest SMSE value for all different values of V, while the 
largest is obtained by the MLE which suffers from 
multicollinearity. 

Table 4. The estimated �m�F values of the estimators. 

� 
Estimator 

MLE PRRE RMLE RPRRE 

0.1 0.0440 0.0438 0.0386 0.0367 
0.3 0.0440 0.0433 0.0386 0.0362 
0.5 0.0440 0.0428 0.0386 0.0358 
0.7 0.0440 0.0424 0.0386 0.0354 
0.9 0.0440 0.0419 0.0386 0.0349 
1 0.0440 0.0417 0.0386 0.0347 

Additionally, from Table 5, the standard errors of all 
coefficients decrease as V increases for all estimators and the 
RPRRE has the lowest values confirming its superiority over 
MLE, PRRE, and RMLE. 

Table 5. The estimated coefficients, corresponding standard errors (SE) of the estimators. 

Estimator � 
�<� �<� �<� �<� �<� 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE 

MLE  0.1405 0.0597 -0.1507 0.0820 0.1467 0.1762 0.0145 0.0336 -0.0167 0.0396 

PRRE 0.1 0.1405 0.0597 -0.1507 0.0818 0.1464 0.1756 0.0145 0.0336 -0.0167 0.0396 

 0.3 0.1405 0.0595 -0.1507 0.0815 0.1459 0.1743 0.0145 0.0335 -0.0167 0.0395 

 0.5 0.1404 0.0593 -0.1506 0.0812 0.1454 0.1732 0.0145 0.0334 -0.0167 0.0394 

 0.7 0.1404 0.0592 -0.1506 0.0809 0.1450 0.1720 0.0145 0.0333 -0.0167 0.0394 

 0.9 0.1404 0.0591 -0.1505 0.0806 0.1445 0.1709 0.0146 0.0333 -0.0167 0.0393 

 1 0.1404 0.0589 -0.1505 0.0805 0.1442 0.1703 0.0146 0.0332 -0.0167 0.0392 

RMLE  0.0786 0.0573 0.0137 0.0684 -0.0511 0.1676 -0.0054 0.0332 0.0129 0.0388 

RPRRE 0.1 0.0785 0.0571 0.0138 0.0681 -0.0509 0.1667 -0.0054 0.0331 0.0129 0.0387 

 0.3 0.0784 0.0570 0.0139 0.0678 -0.0506 0.1658 -0.0055 0.0330 0.0129 0.0387 

 0.5 0.0783 0.0568 0.0140 0.0674 -0.0502 0.1646 -0.0055 0.0329 0.0130 0.0386 

 0.7 0.0782 0.0567 0.0141 0.0671 -0.0498 0.1635 -0.0055 0.0329 0.0130 0.0385 

 0.9 0.0781 0.0565 0.0142 0.0667 -0.0495 0.1623 -0.0055 0.0328 0.0130 0.0384 

 1 0.0780 0.0564 0.0141 0.0665 -0.0493 0.1618 -0.0055 0.0328 0.0130 0.0384 

 

7. Conclusion 

In this paper, the RPRRE was suggested for Poisson 
regression model with exact linear restrictions on the 
parameters to tackle the problem of multicollinearity. Further, 
based on the MSE  matrix criterion, the conditions for 
superiority of the suggested estimator, RPRRE over the 
estimators MLE, PRRE, and RMLE are given. Moreover, a 
Monte Carlo simulation study and a real data application were 
conducted to evaluate the performance of the RPRRE with the 
MLE, PRRE, and RMLE according to SMSE  criterion. The 
results indicate that the RPRRE is superior to the MLE, PRRE, 
and RMLE in the SMSE  sense. So, the RPRRE is a better 
alternative to MLE, PRRE, and RMLE in Poisson regression 
when multicollinearity is present. Therefore, for future work, it 
is recommended to use the RPRRE in many applications to 
tackle the problem of multicollinearity. 
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