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Abstract: In this paper, we are concerned with the the internal control of an elliptic singularly perturbed degenerated
parabolic equation. This parabolic equation models sand transport problem near the coast in areas subjected to the tide. We
study first the null controllability result of the parabolic equation modeling sand transport equation.The limit problem obtained
by homogenization problem is also considered. We use distributed and bounded controls supported on a small open set of the
initial domain. We prove the null controllability of the system at any time by using observability inequality for both problem.
For this purpose, a specific carleman estimate for the solutions of degenerate adjoint limit problem is also proved.
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1. Introduction and Results
This paper, we focus on the study of null controllability

of a singularly perturbed and degenerated parabolic partial
differential equation. This kind of PDE arises from the
modeling sand transport on the seabed in short time. The
model is described in I. Faye and al. [9]. In the case of
linear systems, exact controllability or null controllability is a

widely study by many authors and for various methods see for
example Russell [15], Lebeau-Robbiano [12], J. L. Lions [13].
Many other results of the null controlability of heat equation
can also be found in G. Lebeau and L. Robbiano [12] and A.
V. Fursikov and O. Yu. Imanuvilov [11] and Dubova et al.
[6, 7, 8].

We are particularly interested on models on the general form
of:

{
∂zε

∂t
− 1

ε
∇ · (Aε∇zε) = 1

ε∇ · C
ε in (0, T )× T2

zε(x, 0) = z0(x) in T2,
(1)

Where Aε and Cε are regular coefficients and z0 ∈ L2(T2).
The function zε = zε(t, x), is the dimensionless seabed
altitude at t and in x. For a given constant T, t ∈ [0, T ),
stands for the dimensionless time and x = (x1, x2) ∈ T2, T2

being the two dimensional torus R2/Z2, is the dimensionless
position variable.

Existence and uniqueness of solutions to (1) has been
studied in [9] in the framework of periodic solutions if Aε
and Cε and regular and bounded functions and can be set in

the form Aε(t, x) = Ãε(t, tε , x) and Cε(t, x) = C̃ε(t, tε , x),

where θ → Ãε(t, θ, x), C̃ε(t, θ, x) are 1- periodic in θ. We
have also to recall that the coefficients Aε and Cε can vanish
and if ε is too small, the diffusion coefficient tends to infinity.
The solution zε to (1) is bounded in this space and belongs to
L∞([0, T ), L2(T2)).

Using a result due to Nguetseng [16], [1] and [10], Faye et
al in [9], proved that zε solution to (1) two-scale converges to
a profile U ∈ L∞([0, T ), L∞# (R, L2(T2))) solution to
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∂U

∂θ
−∇ ·

(
Ã(t, ., .)∇U

)
= ∇ · C̃(t, ., .) in ]0, T [×R× T2 (2)

where Ã ∈ L∞([0, T ], L∞# (R, L2(T2))) and C̃ ∈
(
L∞([0, T ], L∞# (R, L2(T2)))

)2

are respectively the two-scale limits of Aε

and Cε.
In this paper, we consider the following control problem: let ω be an open subset of T2 and zε the solution to the problem{

∂zε

∂t
− 1

ε
∇ ·
(
Aε(t, .)∇zε) = 1

ε

(
∇ · Cε(t, .) + χwh

ε
)
, in ]0, T [×T2

zε(x, 0) = z0(x) in Ω,
(3)

where fε ∈ L∞((0, T ), L2(Ω)) and hε is the control function and z0 ∈ L2(Ω), χω represent the charasteristic function of
ω ⊂ T2.

We consider also the following controlled problem,

∂U

∂θ
−∇ ·

(
Ã(t, ., .)∇U

)
= ∇ ·

(
C̃(t, ., .) + Iwh(U)

)
. (4)

Before going further, we will recall the following notions of
controllability.

Definition 1.1. [14] We say that (3) resp (4) is null
controllable at time T, for each z0 ∈ L2(T2) initial data if
there exists, a control hε ∈ L2([0, T ), L2(T2)) (resp) h ∈
L∞([0, T ), L2

#(R, L2(T2))) such that the solutions zε to (3)
resp U to (4) satisfies zε(T, x) = 0 and resp U(t, 1, x) = 0.

Definition 1.2. [14] We say that (3) resp (4) is null locally
controllable at time T, if there exists δT positif, for each

z0 ∈ L2(T2), initial data verifiying ‖z0‖L∞ < δT , there
exists, a control hε ∈ L2([0, T ), L2(T2)) (resp) h ∈
L∞([0, T ), L2

#(R, L2(T2))) such that the solutions zε to (3)
resp U to (4) satisfies zε(T, x) = 0 and resp U(t, 1, x) = 0.

1.1. On the Control Problems

In this paper, we will consider a null controllability result
for the systems

{
∂U
∂θ −∇ ·

(
Ã(t, ., .)∇U

)
= ∇ ·

(
C̃(t, ., .) + χwh(U)

)
, (θ, t, x) ∈ (0, 1)× [0, T )× T2

U(0, 1, x) = U(0, 0, X) = z0(x) x ∈ T2.
(5)

and 
∂zε

∂t −
1
ε∇ ·

(
Ãε(t, ., .)∇zε) = 1

ε

(
∇ · C̃ε(t, ., .) + χwh

ε(U)
)
, (t, x) ∈ [0, T )× T2

zε/t=0 = z0(x), x ∈ T2

zε(T, x) = z1(x), x ∈ T2,

(6)

where T > 0 is given, z0, z1 ∈ L2(Ω) are the initial and
final data. Moreover, h and hε are locally distributed control
acting on the control region ω ⊂ Ω.

The aim of this paper is to analyze the null controllability
of equations (5) and (6) . In perspective, we will look for the
behavior of hε(t, x, U) in system (6) when ε goes to 0.

1.2. Presentation of the Results

In this section, we analyze the null controllability, using a
locally distributed control acting on the control region ω.

We assume that ω is bounded open set included in
the two dimensional torus T2. In the following, we
consider that Ã ∈ L∞([0, T ], L∞# (R, L2(T2))) and C̃ ∈(
L∞([0, T ], L∞# (R, L2(T2)))

)2

are respectively the two-

scale limits of Aε(t, x) = Ãε(t, tε , x) and Cε(t, x) =

C̃ε(t, tε , x). The coefficients Ãε and C̃ε satisfy the following
hypotheses



θ 7−→ (Ãε, C̃ε) is periodic of period 1,

x 7−→ (Ãε, C̃ε) is defined on T2,

|Ãε| ≤ γ, |C̃ε| ≤ γ,

∣∣∣∣∣∂Ãε∂t

∣∣∣∣∣ ≤ ε2γ,
∣∣∣∣∣∂C̃ε∂t

∣∣∣∣∣ ≤ ε2γ,
∣∣∣∣∣∂∇Ãε∂t

∣∣∣∣∣ ≤ ε2γ,∣∣∣∣∣∂Ãε∂θ

∣∣∣∣∣ ≤ γ,
∣∣∣∣∣∂C̃ε∂θ

∣∣∣∣∣ ≤ γ, |∇Ãε| ≤ εγ, |∇ · C̃ε| ≤ εγ,
∣∣∣∣∣∂∇ · C̃ε∂t

∣∣∣∣∣ ≤ ε2γ,
(7)
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
∃ G̃thr > 0, θα < θω ∈ [0, 1] not depending on ε such that θ ∈ [θα, θω] =⇒ Ãε(t, θ, x) ≥ G̃thr,

Ãε(t, θ, x) ≤ G̃thr =⇒


∂Ãε
∂t

(t, θ, x) = 0, ∇Ãε(t, θ, x) = 0,

∂C̃ε
∂t

(t, θ, x) = 0, ∇ · C̃ε(t, θ, x) = 0,

(8)

and 
|C̃ε| ≤ γ|Ãε|, |C̃ε|2 ≤ γ|Ãε|, |∇Ãε| ≤ εγ|Ãε|,

∣∣∣∂Ãε
∂t

∣∣∣ ≤ ε2γ|Ãε|,∣∣∣∂(∇Ãε)
∂t

∣∣∣2 ≤ ε2γ|Ãε|, ∣∣∣∇ · C̃ε∣∣∣ ≤ εγ|Ãε|, ∣∣∣∂C̃ε
∂t

∣∣∣ ≤ ε2γ|Ãε|, ∣∣∣∂C̃ε
∂t

∣∣∣2 ≤ ε2γ2|Ãε|,
(9)

where γ and G̃thr are constant positifs, not depending on ε.
For the notion of two scales limits, we refer to [1, 9, 16]

We have the following theorem.
Theorem 1.1. Let ε > 0, for any T > 0, under hypotheses

(7)-(9), there exists a unique solution zε ∈ L2([0, T ), L2(T2))
solution to (1). This solution satisfies

||zε||L2([0,T ),L2(Ω)) ≤ γ (10)

where γ is a constant not depending on ε.
Moreover, the solution zε to (1) two scales converges to

U ∈ L∞([0, T ), L2
#(R, L2(T2))) unique solution to (2).

Proof The proof of this theorem is done [9].
We have also the following theorem
Theorem 1.2. Let ω ⊂ T2 and ε > 0, under assumptions (7)-

(9), the system (5) is null controllable at any time T > 0. In
other words, there exists a control hε ∈ L2([0, T ) × T2) such
that the solution zε to (6) satisfies zε(T, ·) = 0 in L2(T2).

We have our second null controllability result via the
following theorem

Theorem 1.3. Assume that Ã and C̃ are the two scales
limits of Aε and Cε satisfying (7)-(9), there exists h ∈
L∞# (R, L2(R,T2)) such that the solution U to (5) satisfies
U(θ, ·, ·) = 0 in (0, T )× T2).

The proof of theorem 1.2 and theorem 1.3 are done in
section 3.

In the following, we consider the solution w to the adjoint
problem to (6) given as follows


∂w
∂θ +∇ · (Ã(t, ., .)∇w) = 0 in (0, T )× R× T2.

w(t, 0, x) = w(t, 1, x), x ∈ T2.
w(0, 0, x) = z0(x), x ∈ T2.

(11)
and the solution yε to the adjoint state (5):


∂yε

∂t +∇ · (Aε∇yε) = 0 QT = (0, T )× T2.
yε(x, 0) = z0(x), x ∈ T2

yε(x, T ) = z1
0 , x ∈ T2.

(12)

The corresponding observability inequality is given by the
following result.

Theorem 1.4. Let Ã and C̃ as in Theorem 1.3, Let T > 0, be
given and ω ⊂ T2, then there is a constant C0(T2, ω, γ, G̃th)
such the solution w ∈ L∞((0, T ), L∞# ((R, L2(T2)) of the
adjoint state (11) satisfies

∫
T2

|w(t, 0, x)|2dx ≤ C0(T2, ω, γ, G̃th)

∫ T

0

∫
ω

w(t, θ, x)2dx dθ. (13)

where w is solution to the adjoint problem (5).
In the same way, assuming that hypotheses (7)-(9) holds, and considering yε the solution to the adjoint problem (12) we have∫

T2

|wε(0, x)|2dx ≤ C0(T2, ω, γ, G̃th)

∫ T

0

∫
ω

wε(t, x)2dx dt. (14)

2. Inequality of Observability

2.1. Proof of Theorem 1.4

As is classical in controllability theory, the result of theorem
1.4 can be given a dual form, introducing the so- called adjoint
system of (5)

∂w
∂θ +∇ · (Ã(t, ., .)∇w) = 0 in [0, T )× R× T2

w(t, 0, x) = w(t, 1, x), (t, x) ∈ (0, T )× T2

w(0, 0, x) = z0(x), x ∈ T2.

(15)

In this equation, t is only a parameter. The function θ →
w(t, θ, x) is 1 periodic.

The null controllability of (5) is equivalent to the following
observability of the adjoint problem

Theorem 2.1. Let Ã and C̃ be the two scale limits of Aε
and Cε. Let T > 0, be given and ω ⊂ T2, then there
is a constant C0(T2, ω, γ, G̃th) such that the solution w ∈
L∞([0, T ), L∞# (R, L2(T2)) to ( 15) satisfies the following
observability result

∫
T2

|w(t, 0, x)|2dx ≤ C0(T2, ω, γ, G̃th)

∫ T

0

∫
ω

w(t, θ, x)2dx dθ. (16)
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Proof Multiplying (15) by w and integrating over the T2, we get

1

2

d

dθ

∫
T2

w2dx =

∫
T2

Ã(t, ., .)|∇w|2 ≥ 0 (17)

Because of the fact that, the second terme is positive, we get

1

2

d

dθ

∫
T2

w2dx ≤ 0 (18)

proving that the application t→
∫
T2 w

2(t, θ, x)dx is nondecreasing.
Then we have,

1

2

∫
T2

w2(t, 0, x)dx− 1

2

∫
T2

w2(t, θ, x)dx ≤ 0. (19)

Integrating from from θ1
4 to 3θ1

4 , θ1 ∈ [0, 1] with respect to θ, we have

∫
T2

w(t, 0, x)2dx ≤ 2

θ1

∫ 3θ1
4

θ1
4

∫
T2

w(t, θ, x)2dxdθ. (20)

Let R, σ and ρ given as follows,

σ(θ, x) = θ̃(θ)
(
e2s||ϕ||∞ − esϕ(x)

)
and ρ(t, x) = rsθ̃(t)esϕ(x)

where
∀θ ∈ (0, θ1), θ̃(θ) =

( 1

θ(θ1 − θ)

)k
.

then, the following equality holds∫
T2

w(t, 0, x)2dx ≤ 2

θ1

1

inf{(
θ1
4 ,

3θ1
4 × T2}ρ 3

2 e−2Rσ

∫ 3θ1
4

θ1
4

∫
T2

ρ
3
2w(t, θ, x)2e−2Rσdxdθ (21)

Following the idea developed by Cannarsa et al [2], there exists a constant C depending on T2 such that for all θ1 ∈ [0, 1]∫ 3θ1
4

θ1
4

∫
T2

ρ
3
2w(t, θ, x)2dxdθ ≤ C

∫ 3θ1
4

θ1
4

∫
T2

ρ2w(t, θ, x)2e−2Rσdxdθ (22)

Hence, we get ∫
T2

w(t, 0, x)2dx ≤ 2

θ1
C

1

inf{
θ1
4 ,

3θ1
4 × T2}ρ 3

2 e−2Rσ

∫ 3θ1
4

θ1
4

∫
T2

ρ3w(t, θ, x)2e−2Rσdxdθ

≤ C
∫ θ

0

∫
ω

v2(t, θ, x)dθdx. (23)

We consider also, the adjoint state of (2)
∂yε

∂t +∇ · (Aε∇yε) = 0, (t, x) ∈ QT = (0, T )× T2

yε(x, 0) = z0(x), x ∈ T2

yε(x, T ) = z1
0 , x ∈ T2.

(24)

We have also, the following lemma
Theorem 2.2. Let T > 0 and ε > 0, under assumptions (7)-(9), there exists a constant C0(T2, ω, γ, G̃th) such that the solution

yε to (24) satisfies the following equality∫
T2

|yε(0, x)|2dx ≤ C0(T2, ω, γ, G̃th)

∫ T

0

∫
ω

yε(t, x)2dx dt. (25)
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Proof We proceed in the same way, as in the proof of the above theorem. Multiplying equation (24) by yε and integrating over
T2 we get

1

2

d

dt

∫
T2

(yε)2(t, x)dx =
1

ε

∫
T2

Aε(t, x)|∇yε|2dx ≥ 0 (26)

As the second term is positive, we get from the last equality the following equality

1

2

d

dt

∫
T2

(yε)2(t, x)dx ≥ 0. (27)

Hence, the application t→
∫
T2(yε)2dx is nondecreasing and we have∫

T2

(yε)2(0, x)dx ≤
∫
T2

(yε)2(t, x)dx (28)

giving ∫
T2

(yε)2(0, x)dx ≤ 2

T

∫ 3T
4

T
4

∫
T2

(yε)2(t, x)dxdt

≤ 2

T

1

inf{(
T
4 ,

3T
4 )× T2}ρ 3

2 e−2Rσ

∫ T

0

∫
T2

ρ3(yε)2(t, x)e−2Rσdxdt, (29)

where R, σ and ρ are given in the proof of the above thoerem. Using a result Cannarsa et al.[2] recalled in the proof of the above
theorem, we

∫
T2

(yε)2(0, x)dx ≤ 2

T

1

inf{(
T
4 ,

3T
4 )× T2}ρ 3

2 e−2Rσ
C

∫ T

0

∫
T2

ρ3(yε)2(t, x)e−2Rσdxdt,≤ C
∫ T

0

∫
ω

(yε)2dxdt, (30)

where C depend on the domain T2, ω and T.

2.2. Equivalence Between Null Controllability and Observability

This section is devoted to the proof of theorem 1.2 and theorem 1.3. Thus, in other words, (5) and (6) are null controllable.
Suppose (5) is null controllable and the control h is bounded. Let U be the solution of (5) and let h ∈ L2((0, T ), L2(Ω) ∈ L2(Ω)
be a control steering the solution U of (5) with U(0, 0, ·) = z0(x) such that∫

T2

∫ 1

0

|h(t, θ, x)|2dxdθ ≤ C(T2, ω, T )

∫
T2

|w(0, 0, x)|2dx. (31)

Then, multiplying (5) by w and (24) by U, and integrating by parts over T2 leads to∫
T2

∂U

∂θ
wdx+

∫
T2

Ã∇U.∇wdx =

∫
ω

hwdx (32)

∫
T2

∂w

∂θ
Udx−

∫
T2

Ã∇w · ∇Udx = 0, (33)

then, we get, by summing the two expressions

d

dθ

∫
T2

Uwdx =

∫
ω

hwdx. (34)

Integrating from 0 to θ1 ∈ [0, T ], and taking into account that U(t, θ1, 0) = 0 we get∫
T2

|w(0, x)|2 =

∣∣∣∣∫ 1

0

∫
T2

hvdxdθ

∣∣∣∣
≤ C1/2

(∫
T2

|w(0, 0, x)|2dx
)1/2(∫ 1

0

∫
T2

|w(t, θ, x)|2dxdθ
)1/2
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giving the result.
Conversely, assume that we have an observability equality for the solution w to (15) and let z0 ∈ L2(T2).
For any ε > 0, we consider the functional

Jε(h) =
1

2

∫ 1

0

∫
T2

|h|2dxdθ +
1

2ε

∫
T2

|uh(1, x)|2dx,

where, for every h ∈ L2(R × T2), uh denotes the corresponding solution of (5). By a straightforward convexity argument, Jε
attains its minimum at a unique point, say hε ∈ L2(R× T2). Then, writing uε for uh

ε

, Fermat’s rule yields, for all g ∈ L2(Ω),∫ ∫
T2

hεgdxdt+
1

ε

∫
T2

uε(T, x)Ug(, x)dx = 0 (35)

where Ug is the solution of the problem{
∂U
∂θ −∇ ·

(
A∇U

)
= gχω (t, θ, x) in (0, T )× R× T2

U(0, 0, x) = 0 x ∈ T2.
(36)

Now, let vε be the solution of (15) with

v1(x) =
1

ε
U ε(1, x), x ∈ T2

and multiplying (36) by vε and (15) by Ug we get

d

dθ

∫
T2

Ugvεdx =

∫
ω

vεgdxdt.

Hence
1

ε

∫
T2

U ε(1, x)Ug(1, x)dx =

∫ 1

0

∫
ω

vεgdxdt

which, combined with (35), implies that hε = −χωvε. Therefore, by a same argument, we get from (36) and (15),

d

dt

∫
T2

U εvεdx = −
∫
ω

|vε|2dx.

Then, integrating over [0, 1] and recalling that wε(1, x) = 1
εU

ε(1, x), we get

1

ε

∫
T2

|U ε(1, x)|2dx+

∫ 1

0

∫
ω

|vε|2dxdt =

∫
T2

u0(x)vε(0, x)dx.

Thus, using observability inequality (25) to bound the L2-norm of vε(0, .), one obtains

1

ε

∫
T2

|uε(1, x)|2dx+
1

2

∫ 1

0

∫
ω

|vε|2dxdt ≤ C
∫
T2

|u0(x)|2dx,

where C = C(T, ω, 1). Since
hε = −χωvε,

the last inequality reads as
1

ε

∫
T2

|U ε(1, x)|2dx+
1

2

∫ ∫
ω

|vε|2dxdt ≤
∫
T2

|u0(x)|2dx,

So, the weak limit, say h0, of hεi along a suitable sequence ε→ 0 satisfies (5).

3. Carlman Estimate

In this section, we give Carleman estimate of the solution W solution to (5) . Carleman estimates are weighted Sobolev
inequalites satisfied by the solution. For all s > 0, let us define the weight function ϕ(θ, x) such that

W (t, θ, x) = esϕ(θ,x)U(t, θ, x), (37)
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where U is solution (5). Then we have
U(t, θ, x) = e−sϕ(θ,x)W (t, θ, x). (38)

Replacing U in (5), we get

∂(e−sϕW )

∂θ
−∇ · (Ã∇(e−sϕW )) = ∇ · (C̃) + χwh(U). (39)

In the following, we recalculate, based on data, all the terms of the equation (39) in order to reconstruct it. Because of this, we
get

∂(e−sϕW )

∂θ
=
[
− s∂ϕ

∂θ
W +

∂W

∂θ

]
e−sϕ (40)

and

Ã∇(e−sϕW (θ, x)) = Ã
[
−s∇ϕe−sϕW + e−sϕ∇W

]
giving

∇ · (Ã∇(e−sϕW (θ, x))) = −s∇Ã∇ϕe−sϕW +∇Ãe−sϕ∇W − sÃ∆ϕe−sϕW

+s2Ã|∇ϕ|2e−sϕw − 2sÃ∇ϕ∇We−sϕ + e−sϕÃ∆W. (41)

Then, equation (5) becomes

∂U

∂θ
−∇ ·

(
Ã∇U) =

∂(e−sϕW )

∂θ
−∇ · (Ã∇(e−sϕW ))

−se−sϕ
[
−s∂ϕ

∂θ
W +

∂W

∂θ
+∇Ã∇W − s2Ã|∇ϕ|2W + 2sÃ∇ϕ∇W −∇ · (Ã∇W ).

]
(42)

Then, the solution W solves the following system
∂(e−sϕW )

∂θ −∇ · (Ã∇(e−sϕW ))

−se−sϕ
[
−s∂ϕ∂θW + ∂W

∂θ +∇Ã∇W − s2Ã|∇ϕ|2W + 2sÃ∇ϕ∇W −∇ · (Ã∇W )
]

= ∇ · (C̃ + χwh(U)).

W (t, θ, x) = W (t, 1, x), x ∈ T2.

(43)

In the following, let’s define the following operator P by

PW =
∂W

∂θ
−∇ · (Ã∇W ) + 2sÃ∇ϕ∇W + (−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ))W (44)

W defined by (37) is solution to
PW = esϕ∇ ·

(
C̃ + h

)
in R× T2. (45)

We are now interested in the adjoint operator P ∗ of P defined as follows (PW,V ) = (W,P ∗V ) .
We have (

∂W

∂t
, V

)
= −

(
W,

∂V

∂t

)
(46)

(−∆W,V ) = (W,−∆V ) (47)

Multiplying (44) by V and integrating, we get

(
∂W

∂θ
V − Ã∆WV −∇Ã∇WV + 2sÃ∇ϕ∇WV ) + (−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ sÃ∆ϕ+ s∇Ã∇ϕ)WV

= −W ∂V

∂θ
− ÃW∆V +∇Ã∇VW − 2sÃ∇ϕW∇V + (−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ sÃ∆ϕ+ s∇Ã∇ϕ)WV

= W [−∂V
∂θ
− Ã∆V − 2sÃ∇ϕ∇V +∇Ã∇V + (−s∂ϕ

∂θ
− s2Ã|∇ϕ|2 + sÃ∆ϕ+ s∇Ã∇ϕ)V ]
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Thus, the adjoint operator P ∗V is identified as follows:

P ∗V = −∂V
∂θ
−∇ · (Ã∇V )− 2sÃ∇ϕ∇V + (−s∂ϕ

∂θ
− s2Ã|∇ϕ|2 − s∇ · (Ã∇ϕ))V (48)

and we define the two operators P+W and P−W, as the following

P+W =
1

2
[PW + P ∗W ] (49)

P−W =
1

2
[PW − P ∗W ] (50)

giving directly

PW = P+W + P−W = esϕ∇ ·
(
C̃ + h

)
in R× T2. (51)

From (44) and (48), we have

P+W =
1

2

[∂W
∂θ
−∇ · (Ã∇W ) + 2sÃ∇ϕ∇W + (−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ))W

−∂W
∂θ

+∇ · (Ã∇W )− 2sÃ∇ϕ∇W + (−s∂ϕ
∂θ
− s2Ã|∇ϕ|2 + s∇ · (Ã∇ϕ))W

]

P+W =

(
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ)

)
W (52)

and

P−W =
1

2
[
∂W

∂θ
−∇ · (Ã∇W ) + 2sÃ∇ϕ∇W + (−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ))W

+
∂W

∂θ
+∇ · (Ã∇W ) + 2sÃ∇ϕ∇W − (−s∂ϕ

∂θ
− s2Ã|∇ϕ|2 + s∇ · (Ã∇ϕ))W ]

from which we have
P−W =

∂W

∂θ
+ 2sÃ∇ϕ∇W + s∇ · (Ã∇ϕ))W (53)

We have the following lemma.
Lemma 3.1 Let D = [0, 1]× T2. The following identity holds

(P+W,P−W )L2(D) =− s
∫ 1

0

∫
T2

∂ϕ

∂θ
W
∂W

∂θ
dxdθ − 2s2

∫ 1

0

∫
T2

∂ϕ

∂θ
∇ϕÃW∇Wdxdθ

−s2

∫ 1

0

∫
T2

∂ϕ

∂θ
∆ϕÃW 2dxdθ − s2

∫ 1

0

∫
T2

|∇ϕ|2ÃW ∂W

∂θ
dxdθ

−2s3

∫ 1

0

∫
T2

|∇ϕ|3|Ã|2W∇Wdxdθ − s3

∫ 1

0

∫
T2

|∇ϕ|2∆ϕ|Ã|2W 2dxdθ

+s

∫ 1

0

∫
T2

∆ϕÃW ∂W

∂θ
dxdθ + 2s2

∫ 1

0

∫
T2

∆ϕ∇ϕ|Ã|2W∇Wdxdθ

+

∫ 1

0

∫
T2

|∆ϕ|2|Ã|2W 2dxdθ

Proof We have the following equality

|(P+W + P−W )|2 = |P+W |2 + 2 < P+W,P−W > +‖P−W‖2

Then we have,
‖PW‖2 = ‖P+W‖2 + 2 < P+W,P−W > +‖P−W‖2,
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and
2
〈
P+W,P−W

〉
≤ ‖PW‖2

2 < P+W,P−W >≤ ‖esϕ(∇ · ĉ+ h)‖2. (54)

Replacing each operator by it’s expression we have

(P+W,P−W ) =

((
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ)

)
W,

∂W

∂θ
+ 2sÃ∇ϕ∇W + s∇ · (Ã∇ϕ))W

)
,

and because of the linear of the scalar product we get directly.

(P+W,P−W ) =

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ sÃ∆ϕ)W,

∂W

∂θ

)
︸ ︷︷ ︸

=I1

+
(
P+W, 2sÃ∇ϕ∇W

)
︸ ︷︷ ︸

=I2

+
(
P+W, s∇ · (Ã∇ϕ)W )

)
︸ ︷︷ ︸

=I3

.

Developing term by term we have,

I1 =

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ sÃ∆ϕ)W,

∂W

∂θ

)
=

(
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã, ∂W

∂θ

)
L2(D)

+

(
(−sÃ∆ϕ)W,

∂W

∂θ

)
L2(D)

, (55)

I2 =
(
P+W, 2sÃ∇ϕ∇W

)
L2(D)

=

(
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã, 2sÃ∇ϕ∇W

)
L2(D)

+
(
∇ · (Ã∇W ), 2sÃ∇ϕ∇W

)
L2(D)

, (56)

and

I3 =
(
P+W, s∇ · (Ã∇ϕ)W

)
L2(D)

=

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã)W, s∇ · (Ã∇ϕ)W

)
L2(D)

+
(
∇ · (Ã∇W ), s∇ · (Ã∇ϕ)W

)
L2(D)

. (57)

Combining the formulas giving in (55), (56) and (57), we get for (P+W,P−W )L2(D) the following expression

(P+W,P−W )L2(D) =

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã)W,

∂W

∂θ

)
L2(D)

+

(
(−sÃ∆ϕ)W,

∂W

∂θ

)
L2(D)

+

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã)W, 2sÃ∇ϕ∇W

)
L2(D)

+
(
∇ · (Ã∇W ), 2sÃ∇ϕ∇W

)
L2(D)

+

(
(−s∂ϕ

∂θ
− s2|∇ϕ|2Ã)W, s∇ · (Ã∇ϕ)W

)
L2(D)

+
(
∇ · (Ã∇W ), s∇ · (Ã∇ϕ)W

)
L2(D)

.

giving

(P+W,P−W ) =− s
∫ 1

0

∫
T2

(
∂ϕ

∂θ
W

)
∂W

∂θ
dxdθ − 2s2

∫ 1

0

∫
T2

(
∂ϕ

∂θ
W

)
(Ã∇ϕ∇W )dxdθ

−s2

∫ 1

0

∫
T2

(
∂ϕ

∂θ
W

)
(Ã∆ϕW )dxdθ − s2

∫ 1

0

∫
T2

(
|∇ϕ|2ÃW ∂W

∂θ

)
dxdθ

−2s3

∫ 1

0

∫
T2

(
|∇ϕ|2ÃW

)
(Ã∇ϕ∇W )dxdθ − s3

∫ 1

0

∫
T2

(
|∇ϕ|2ÃW

)
(Ã∆ϕW )dxdθ

+s

∫ 1

0

∫
T2

(Ã∆ϕW )
∂W

∂θ
dxdθ + 2s2

∫ 1

0

∫
T2

(Ã∆ϕW )(Ã∇ϕ∇W )dxdθ.

Proposition 3.1 The following identity holds

(P+W,P−W )L2(D) =

∫
T2

[
(−s∂ϕ

∂θ
− s2Ã∇|ϕ|2)W 2

]1
0
dx+ s

∫
D

∂2ϕ

∂θ2
W 2dxdθ + s2

∫
D

∂Ã
∂θ
|ϕ|2W 2dxdθ
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+s2

∫
D

Ã ∂

∂θ
|ϕ|2W 2dxdθ + s

∑
j

∫
D

Ã
[ ∂

∂xj

(∂W
∂xj

∂W

∂θ

)]
dxdθ + 2s

∫
D

[
∇
(
s
∂ϕ

∂θ
+ s2|∇ϕ|2Ã

)
+
(
s
∂ϕ

∂θ
+ s2|∇ϕ|2∇Ã

)]
∇ϕW 2dxdθ + 2s2

∫
D

∂ϕ

∂θ
Ã∆ϕW 2dxdθ + 2s3

∫
D

Ã2|∇ϕ|2∆ϕW 2dxdθ

+4s

∫
D

(
Ã∇Ã|∇W |2 + Ã2∇ϕ∇W∆W

)
dxdθ + s

∫
D

(
− s∂ϕ

∂θ
− s2|∇ϕ|2Ã

)
∇ ·
(
Ã∇ϕ

)
W 2dxdθ

+s2

∫
D

|∇ · (Ã∇ϕ)|2W 2dxdθ

Proof It is enough to develop the integrals I1, I2 and I3 and by simplifying some expressions to obtain the result. We also
consider the fact that the function ϕ(x, θ) belongs to C∞([0, 1]× T2) and is 1-periodic with respect to the variable θ. Following
this idea, we have

I1 =
(
P+,

∂W

∂θ

)
=

((
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ)

)
W,

∂W

∂θ

)
=

∫
D

(
− s∂ϕ

∂θ
− s2|∇ϕ|2Ã

)
W
∂W

∂θ
dxdθ +

∫
D

s∇ · (Ã∇ϕ)W
∂W

∂θ

Integrating by parts the integral I1 with respect to the variable θ, and using periodicity, we get

I1 =

∫
T2

[
(−s∂ϕ

∂θ
− s2Ã∇|ϕ|2)W 2

]1
0
dx+ s

∫
D

∂2ϕ

∂θ2
W 2dxdθ + s2

∫
D

∂Ã
∂θ
|ϕ|2W 2dxdθ

+ s2

∫
D

Ã ∂

∂θ
|ϕ|2W 2dxdθ + s

∫
D

∑
j

∂

∂xj

(
Ã ∂ϕ

∂xj

)
W
∂W

∂θ
dxdθ. (58)

The last term of (58) can be written as follow

J2 = s
∑
j

∫
D

[ ∂Ã
∂xj

∂ϕ

∂xj
W
∂W

∂θ
+ Ã ∂

∂xj
(
∂ϕ

∂xj
)W

∂W

∂θ

]
dxdθ. (59)

Integrating J2 by parts in the first term, we have

J2 =
∑
j

∫
D

Ã
[ ∂

∂xj

( ∂ϕ
∂xj

W
∂W

∂θ

)
+

∂

∂xj
(
∂ϕ

∂xj
)W

∂W

∂θ

]
dxdθ, (60)

and then,

J2 = s

∫
D

Ã∆ϕ
d

dθ
W 2dxd θ + s

∫
D

Ã ∂ϕ

∂xj

∂

∂xj
(
d

2dθ
W 2)dxd θ (61)

and

J2 = −s
∫
D

W 2 d

dθ
(Ã∆ϕ)dxd θ + s

∫
D

Ã∇ϕ d

2dθ
∇W 2dxdθ. (62)

Then we have

I1 =

∫
T2

[
(−s∂ϕ

∂θ
− s2Ã∇|ϕ|2)W 2

]1
0
dx+ s

∫
D

∂2ϕ

∂θ2
W 2dxdθ + s2

∫
D

∂Ã
∂θ
|ϕ|2W 2dxdθ

+ s2

∫
D

Ã ∂

∂θ
|ϕ|2W 2dxdθ − s

∫
D

W 2 d

dθ
(Ã∆ϕ)dxd θ + s

∫
D

Ã∇ϕ d

2dθ
∇W 2dxdθ. (63)

For the second term, we have also

I2 =
(
P+W, 2sÃ∇ϕ∇W )L2(D) =

((
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ)

)
W, 2sÃ∇ϕ∇W

)
L2(D)

=
(

(−s∂ϕ
∂θ
− s2|∇ϕ|2Ã)W, 2sÃ∇ϕ∇W

)
L2(D)

+
(
s∇ · (Ã∇ϕ)W, 2sÃ∇ϕ∇W

)
L2(D)

. (64)
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The first scalar product can be written as follows

J3 = −2s
∑
j

∫
D

(
s
∂ϕ

∂θ
+ s2|∇ϕ|2Ã

)
Ã ∂ϕ

∂xj
W
∂W

∂xj
dxdθ (65)

giving

J3 = s
∑
j

∫
D

∂

∂xj

[(
s
∂ϕ

∂θ
+ s2|∇ϕ|2Ã

)
Ã ∂ϕ

∂xj

]
W 2dxdθ. (66)

Deriving and regrouping the semblable term, we get

J3 = 2s

∫
D

[
∇
(
s
∂ϕ

∂θ
+ s2|∇ϕ|2Ã

)
Ã+

(
s
∂ϕ

∂θ
+ s2|∇ϕ|2∇Ã

)]
∇ϕW 2dxdθ

+2s2

∫
D

∂ϕ

∂θ
Ã∆ϕW 2dxdθ + 2s3

∫
D

Ã2|∇ϕ|2∆ϕW 2dxdθ (67)

The second term of I2 satisfy the following

J4 = 2
(
∇ · (Ã∇W ), 2sÃ∇ϕ∇W

)
L2(D)

= 4s

∫
D

∇ · (Ã∇W )Ã∇ϕ∇Wdxdθ (68)

Developing the expression J4, we get

J4 = 4s

∫
D

(
∇Ã∇W + Ã∆W

)
Ã∇ϕ∇Wdxdθ = 4s

∫
D

(
Ã∇Ã∇ϕ|∇W |2 + Ã2∇ϕ∇W∆W

)
dxdθ (69)

giving for I2 the following equality

I2 = 2s

∫
D

[
∇
(
s
∂ϕ

∂θ
+ s2|∇ϕ|2Ã

)
Ã+

(
s
∂ϕ

∂θ
+ s2|∇ϕ|2∇Ã

)]
∇ϕW 2dxdθ + 2s2

∫
D

∂ϕ

∂θ
Ã∆ϕW 2dxdθ

+ 2s3

∫
D

Ã2|∇ϕ|2∆ϕW 2dxdθ + 4s

∫
D

(
Ã∇Ã∇ϕ|∇W |2 + Ã2∇ϕ∇W∆W

)
dxdθ (70)

For the integral I3 we have

I3 =
(
P+W, s∇ · (Ã∇ϕ

)
W )L2(D) =

((
−s∂ϕ

∂θ
− s2|∇ϕ|2Ã+ s∇ · (Ã∇ϕ)

)
W, s∇ · (Ã∇ϕ

)
W

)
L2(D)

= s

∫
D

(
− s∂ϕ

∂θ
− s2|∇ϕ|2Ã

)
∇ · (Ã∇ϕ

)
W 2dxdθ + s2

∫
D

|∇ · (Ã∇ϕ)|2W 2dxdθ. (71)

By combining the formulas (63), (70), (71), we get the desired result.
Lemma 3.2 Let W be the solution of (37) and P+ and P− defined by (52) and (53). Then we have the following estimates:

2
(
P+W,P−W

)
≥ 4s3

∫ 1

0

∫
T2

Ã2|∇ϕ|2∆ϕ|W |2dxdθ + 4s

∫ 1

0

∫
T2

Ã∇Ã · ∇ϕ|∇W |2dxdθ (72)

proof The proof of this lemma follows from minimization of the each term I1, I2 and I3.
We have also the following proposition
Proposition 3.2 Forall s ≥ s0 and forall W ∈ L2(R, L2(T2)) verifying W (θ, x) = esϕ(θ,x)U(θ, x), where U is solution to

(5), we have the following estimate

c

∫ 1

0

∫
D

Ã
(
s|∇U |2 + s3|U |2

)
dxdθ ≤

∫ 1

0

∫
T2

|esϕ(∇ · C̃ + h(θ, x))|2dxdθ. (73)

Proof It follows from (54) that ∫ 1

0

∫
T2

||esϕ(∇ · C̃ + h(θ, x))||2dxdθ = ||PW ||2.

As
||PW ||2 = ||(P+W,P−W )||2 = ||P+W ||2 + ||P−W ||2 + 2(P+W,P−W )L2(D).
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we deduce that,

2(P+W,P−W )L2(D) ≤
∫ 1

0

∫
T2

||esϕ(∇ · C̃ + h(θ, x))||2dxdθ

Thus, because Lemma 3.2,

4s3

∫ 1

0

∫
T2

Ã2|∇ϕ|2∆ϕ|W |2dxdθ + 4s

∫ 1

0

∫
T2

Ã∇Ã · ∇ϕ|∇W |2dxdθ ≤
∫ 1

0

∫
T2

||esϕ(∇ · C̃ + h(θ, x))||2dxdθ (74)

In consequence, for all s ≥ s0 and ∀W ∈ L∞(R, L2(T2)) given by W (t, θ, x) = esϕ(θ,x)U(t, θ, w), we can rewrite inegality
(74) in terms of U. This equality, called Carlemann inequality is given by

4s3

∫ 1

0

∫
T2

Ã2|∇ϕ|2∆ϕ|U |2dxdθ + 4s

∫ 1

0

∫
T2

Ã∇Ã · ∇ϕ|∇U |2dxdθ ≤
∫ 1

0

∫
T2

||(∇ · C̃ + h(θ, x))||2dxdθ. (75)

3.1. Estimates of (P+W,P−W ) and ‖P−W‖2

Lemma 3.3 Under assumptions, there exist constant such that, the term (P+W,P−W ) satisfy the following estimates

‖(P+W,P−W )‖ ≤ C̃1

∫ 1

0

∫
T2

|W |2dxdθ + C̃2

∫ 1

0

∫
T2

|∇W |2dxdθ

where C̃1 and C̃2 are two constant depending on s, Ã and
ϕ.

Proof The proof is done in fews steps. We first estimates
each term of the scalar product (P+W,P−W ).

Denoting by I1 the following integrals, we have

I1 =

(
−s∂ϕ

∂θ
W,

∂W

∂θ

)

|I1| =
∣∣∣∣−s∫ 1

0

∫
T2

∂ϕ

∂θ
W
∂W

∂θ
dxdτ

∣∣∣∣
≤s
∫ 1

0

∫
T2

∣∣∣∣∂ϕ∂θ W ∂W

∂θ

∣∣∣∣ dxdt
≤s
∫
T2

∫ 1

0

|∂ϕ
∂θ
|
[
d

2dθ
|W |2

]
dx

≤s
2

∫
T2

∫ 1

0

|∂ϕ
∂θ
||W |2dx

≤sc
2
‖W‖2L2(0,T,L2(T2))

Estimate of

I2 =

(
−s∂ϕ

∂θ
W, 2sÃ∇ϕ∇W

)
|I2| ≤ 2s2

∫ 1

0

∫
T2

∣∣∣∣∂ϕ∂θ∇ϕÃ
∣∣∣∣ |W∇W |dxdθ

≤ 2s2

∫ 1

0

∫
T2

|ϕ∇ϕ| |∂Ã
∂θ
| |W∇W |dxdθ

≤ 2s2C1

∫ 1

0

∫
T2

1

2
∇|W |2dθdx

≤ s2C1

∫ 1

0

|∇W |2

Estimate of I3

I3 =− s2

∫ 1

0

∫
T2

∆ϕ
∂ϕ

∂t
ÃW 2dxdt

= Cs2

∫ 1

0

∫
T2

|W |2dxdt

Estimate of I4

|I4| = s2

∫ 1

0

∫
T2

|∇ϕ|2Ã
∣∣∣∣W ∂W

∂θ

∣∣∣∣ dxdθ
≤ C4s

2

∫
T2

∫ 1

0

∣∣∣∣W ∂W

∂θ

∣∣∣∣ dθdx
≤ C4s

2

∫
T2

∫ 1

0

d

2dθ
|W |2dθdx ≤ 0

Estimate of I5

|I5| = s3

∫ 1

0

∫
T2

∣∣∣|∇ϕ|3|Ã|2∣∣∣ |W∇W |dxdt
≤ 2s3

∫
T2

∫ 1

0

|∇ϕ|
(
|∇ϕ||Ã|

)2

|W∇W |dt

≤ 2C5s
3

∫
T2

∫ 1

0

∇|W |2dxdθ

Estimation of I6

I6 =

∫ 1

0

∫
T2

(−s2|∇ϕ|2ÃW )(SÃ∆ϕW )dxdt

≤ C6s
3

∫ 1

0

∫
T2

W 2dxdt
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Estimate of I7

I7 =s

∫ 1

0

∫
T2

∆ϕÃW ∂W

∂t
dxdθ

≤ C7s

∫ 1

0

∫
T2

∣∣∣∣12 ∂

dθ
|W 2

∣∣∣∣ dxdt
≤ 0

Estimate of I8

I8 =
(
− s∂ϕ

∂θ
− Ãs2|∇ϕ|2W, s∇ · (Ã∇ϕ)W

)
≤ C8

∫
D

|W |2dxdθ

Estimate of I9

I9 =
(
− 2s∇ · (Ã∇W ), s∇ · (Ã∇ϕ)W

)
≤ C9

∫
D

|∇W |2dxdθ.

4. Conclusion

In this work, we are interested in the null controlability
of a degenerated and singularly perturbed partial differential
equation. We therefore show the controlability at any times T
by taking inspiration from an observability result. A carlmann
estimate is also proven. It would therefore be interesting to
look at the numerical aspects of these problems.
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Asymptotic expansion of the Vlasov equation in a large
external magnetic field, J. Math. Pures et Appl. 80
(2001), 815–843.

[11] A. V. Fursikov, O. Y. Imanuvilov, Controlability of
evolution equations, Suhak Kanguirok, Seoul National
University, 1996.

[12] G. Lebeau, L. Robbiano, Contrôle exact de l’équation de
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