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Abstract: Missing data is a real problem in many surveys. To overcome the problems caused by missing data, partial 

deletion and single imputation methods among others have been proposed. However, problems such as discarding usable data, 

inaccuracy in reproducing known population parameters and standard errors are associated with them. In ratio, regression and 

stochastic imputation, it is assumed that there is a variable with complete cases that can be used as a predictor in estimating 

missing values in the other variable(s) and the relationship between the dependent and independent variable(s) is linear. This 

might not always be the case. To overcome these problems accompanied to stochastic and regression estimation, two-phase 

sampling and nonparametric model-based estimation were employed in this research. Estimator of population total in two-

phase sampling was modified. The variance of estimator developed by Hidiroglou, Haziza and Rao was used to compare the 

performance of the proposed non-parametric model-based imputation in reproducing well known population total and standard 

errors compared to mean, regression and stochastic methods of imputation. The data was simulated and analyzed using R-

statistical Software. The empirical study revealed that non-parametric model-base imputation method is better in reproducing 

both known population total and standard error. 
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1. Introduction 

The main goal of all surveys is to obtain a more precise 

and reliable information about population characteristics 

under study. Both census and sampling methods can provide 

this information. However, missing data is associated with 

almost every survey and dealing with them has been a subject 

of research from time to time. This is because missing data 

creates a problem in data analysis and also makes estimates 

of the population characteristics under study to be biased, [1, 

2]. According to [3, 4], the consequence of missing data on 

quantitative research can be severe, leading to biased 

estimates of parameters, loss of information, diminished 

statistical power, increased standard errors, and weakened 

generalizability of outcomes. Some factors that may result in 

missing data include non-response, dropout of a participant 

before the end of a longitudinal study, improper data 

collection, malfunctioning of equipment, bad weather 

condition or mistakes are made in data entry [3, 5]. 

Previously, various methods of dealing with missing data 

have been proposed. However, each of these methods has its 

own setbacks. As earlier mentioned, regression and stochastic 

imputation methods rely on the assumption that the 

relationship between study variable and predictor variable is 

linear. Nonetheless, there may be no such a relationship. It is 

also believed that there is a variable with complete cases that 

can be used in predicting missing values in the other 

variable(s), which might not always be the case. In this 

research, we provide a solution to the two cases by 

employing both nonparametric model-based estimation and 

two-phase sampling. The reason for adopting nonparametric 

model-based regression is because unlike simple regression 

and stochastic imputation, nonparametric model-based 
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regression does not restrict the relationship between the 

predictor and outcome variables to any form of an equation 

but it entirely leaves it to be determined by the data [2, 6, 7]. 

2. Methods of Dealing with Missing Data 

Missing data can be dealt with in various ways. One can 

decide to (i) exclude the entire record from analysis if any 

value is missing in a given case, (ii) reduce available data so 

that a dataset has no missing values and estimate each 

element in the inter-correlation matrix using all available 

data, [8, 9] (iii) replace missing data with its probable value 

based on other existing information or (iv) employ maximum 

likelihood method. The first two techniques are classified as 

partial deletion techniques (the earlier is known as listwise 

deletion or complete case analysis and the latter being 

pairwise deletion or available case analysis). And the third 

method is referred to as imputation. Imputation is broadly 

classified into two; single imputation in which the missing 

values are replaced only once and multiple imputations in 

which missing values are replaced more than once [10, 11]. 

Single imputation consists of imputation methods such as, 

last observation carried forward, mean, ratio, regression, 

stochastic and pattern match. We review mean, regression, 

ratio and stochastic imputation methods because we shall 

compare their performance in terms of well reproducing 

known population total estimate and its variance estimate to 

those of the proposed nonparametric model based method of 

estimating missing values [12]. 

2.1. Mean Imputation 

In mean imputation, it is assumed that the mean of the 

available variable values best estimates any of the missing 

value of that missing values with the mean of the variable. 

Thus, all the missing values are replaced with the mean of the 

available values. Mean imputation has its own advantages 

such as; simplicity, it does not discard any available data and 

does not change the mean of the variable. However, it has 

been cautioned that mean substitution should not be used 

since it has limitations of overestimating sample size, 

variance is underestimated, correlations are negatively biased 

and the distribution of new values is an incorrect 

representation of the population values because the shape of 

the distribution is distorted by adding values equal to the 

mean [13, 14]. 

2.2. Regression Imputation 

As the name suggests, regression imputation replaces 

missing values with it estimate obtained from a regression 

equation. 

	�� = �� + �	
�                              (1) 

A data set is first reduced to complete cases and the 

parameters of a regression line are estimated. Once the model 

has been obtained, missing data are estimated using the model 

together with the other variable(s) available information. 

However, apart from the already mentioned drawbacks of 

regression estimation, the problem of underestimation of the 

standard variance still exists (though there is an improvement 

compared to mean imputation). This is because by substituting 

a value that is perfectly predictable from other variables, no 

new information is added but the sample size is increased thus 

the standard error is reduced [8, 15]. 

2.3. Stochastic Regression 

Stochastic regression uses the same basic procedure as 

standard regression imputation, so the regression coefficients 

are first obtained as in the case of regression imputation. 

However, for stochastic imputation an additional residual 

term �� that is introduced to correct the problem of 

underestimation of variance in regression imputation. The 

equation is given by 

	�� = �� + �	
� + �� 	                      (2) 

This residual term is a random value that is normally 

distributed with a mean of zero and a variance equal to the 

residual variance from the regression model, [15]. After 

stochastic model was obtained, missing values were 

estimated and substituted in the dataset and analysis was 

done as if there were no missing value. Since it starts with 

the same procedure as regression imputation, the assumption 

of linearity between the outcome variable and predictor 

variable(s) and existence of a variable with complete cases to 

be used as predictor variable(s) which affects regression 

imputation are also brought in. 

3. Proposed Estimator and Its 

Asymptotic Properties 

Let 
���� = ���� ∈ ��� and 
����� = ����, � ∈ ���	be the first 

order and second order inclusion probability in the first-phase 

sample. Also let 
� ��⁄��� = ���� ∈ � ��⁄ �  and 
�� ��⁄��� =����, � ∈ ��/���  be the conditional first order and second 

order inclusion probability in second-phase sample given that 

the unit is in the first-phase sample. Since the first-phase 

sample units are selected by SRSWOR, 


���� = � � 	and 
����� = !�!"��#�#"��              (3) 

Calculation of second-phase inclusion probabilities is a bit 

complicated. When �$ > 1 and some values 
� are extremely 

large, the inclusion probabilities for those elements are 

greater than 1. Simply, for the large units �$	
� ∑ 
�!�(�⁄ >1,	may be encountered. One possibility of solving this was 

provided by [16]. The research stated that for large units set 
� = 1.		This	implies	that	 those elements are taken with 

certainty and for the remaining elements, 
�  is set 

proportional to the size of 	
� . This results in a loss in 

precision as a result of purposively selecting some units. For 

less extremely large units, second-phase inclusion 

probabilities are given by 
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�/����� = !$45∑ 45657� 	                    (4) 

After obtaining the first order inclusion probability into the 

second phase sample, the second-order inclusion probability 

are is estimated as [17] 


�� ��⁄��� = ��!$"��85 9�⁄�:� 8; 9�⁄�:��!$"85 9�⁄�:� "8; 9�⁄�:� 	               (5) 

3.1. Proposed Estimator 

The 
∗ − estimator	of population total is given in [18] as 

@	 = ∑ A585���85/9��:��∈�: = ∑ A585∗�∈�: 	              (6) 

Where 
�∗ = 
����
�/����� = !# 
�/����� 	 since the first phase 

sample is selected by SRSWOR. 

Thus equation (6) becomes 

@	 = #! ∑ A585/9��:��∈�: 	                         (7) 

Suppose that there are B  units whose � − values  are 

available in the second-phase sample and ��$E are generated 

from a model relating 
�$E to ��$E in the second-phase sample 

is given by 	�� = B�
�� + F� , then for a data point 
 = 
� 
whose study variable value is missing, ��values is estimated 

as 

��� = BGH
�I + F�                     (8) 

Using above information and (8) in (7) we get 

@	 = #! J∑ A585 9�⁄�:�
K�(� +∑ A�;8; 9�⁄�:�

!L�(KM� N = #! J∑ A585/9��:�K�(� + ∑ KGH4;IMO;8;/9��:�!L�(KM� N                                         (9) 

This is the proposed estimator of population total in 

presence of missing values under two-phase sampling 

scheme. B�
�� is the conditional expectation of	@  given 	P . 

The only property known for B�
�� is that it is smooth and 

continuous. F�  is error random variable which is normally 

distributed with mean 0 and variance 	Q�
�.  Also Q�
�  is 

strictly positive and smooth. 

Nadaraya [19] and Watson [20] estimated the mean 

function BH
�I as a locally weighted average using a kernel 

weight function. In their case, they estimated the non-

sampled part of the population using model (8), available 

auxiliary information and the sampled units. Here, B	 available data for the study variable, auxiliary 

information (which were availed in the first phase sample), 

and the model (3.6) are used to estimate the missing values 

of the study variable. The estimate of the mean function is 

given by 

BGH
�I = ∑ R�
����K�(� , R�
�� = STH45"4;I∑ STH45"4;IU57�         (10) 

Where R�
�� is the weight of the �VW unit of study variable 

value being available in the second-phase sample. 

Furthermore, ∑ R�
��K�(� = 1 and X is a kernel function with XY�Z� = 1 � X[Z � \ which satisfies the following properties 

�a�]X�Z�^Z = 1		�b� ]ZX�Z�^Z = 0 

�c�]Z�X�Z� ^Z = X� < ∞	�d�	X�Z� = X�−Z� �	 is the shaping parameter called bandwidth which 

determines the amount of smoothing done to the data. 

3.2. Asymptotic Unbiasedness 

From equation (9) we have 

e�e�H@	I = #! e�e� J∑ A585 9�⁄�:�
K�(� +∑ KGH4;IMÔ;8; 9�⁄�:�

!$�(KM� N     (11) 

Consider 

egBGH
�I − BH
�Ih = e ijR�
��B�
�� − BH
�IK
�(� k = e l∑ 1B� XH
� − 
�IB�
��K�(�∑ 1B� X [
� − 
�� \K�(�

−BH
�Im 
= e n∑ �KY oX [45"4;Y \ gB�
�� − B�
��hg p̂q"�H
�IhrK�(� s	                                                     (12) 

Where p̂q�
�� = ∑ �KY X [45"4;Y \K�(�  

The expectation in eq. (12) reduces to 

e tgBGH
�I − BH
�Ih 
�u v = Y:wH4;Ix:: M	yztY{M[TU\�:v
|}H4;IM	Y:x:: |}LLH4;IMyz~Y{M[ �TU\�:�	                                       (13) 

From (13) we see that as � → 0 and → ∞ e [BGH
�I − BH
�I\ → 0. That is, BGH
�I converges in probability to BH
�I as 
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� ⟶ 0	and	B� → ∞. Simply, ��� → �� 	for	� ⟶ 0	and	B� → ∞.	Therefore (11) becomes 

e�e�H@	I = �� e�e� lj ��
� ��⁄���
K
�(� + j BGH
�I + F̂�
� ��⁄���

!L
�(KM� m = �� e�e� ij ��
� ��⁄���

K
�(� + j ���
� ��⁄���

!$
�(KM� k 

≈ �� e�e� ij ��
� ��⁄���
K
�(� + j ��
� ��⁄���

!$
�(KM� k = �� e�e� lj ��
� ��⁄���

!L
�(� m = �� e�je�����
� ��⁄���

!L
�(� = �� e�j ��
� ��⁄��� Pr�� ∈ �� ��⁄ �!L

�(�  

= �e� i1�j ��
� ��⁄��� 
� ��⁄���
!
�(� k = �� ije�����!

�(� k = ��j@�#
�(� Pr�� ∈ ��� = ��j@�
����#

�(� = ��j@� ��
#
�(� = @ 

Hence for	� → 0	and	B� → ∞, @		is asymptotically unbiased estimate of the population total of the study variable in presence 

of missing data. This result also indicates that for B → ∞ the second-phase sample size �$	must be sufficiently large as well. 

3.3. Variance of the Estimator 

���H@	I = egQ��H@	� ��⁄ Ih + ���geH@	� ��⁄ Ih = egQ��H@	� ��⁄ Ih + ���g@	�h	                               (14) 

Using Sen-Yates-Grundy variance estimator developed in [21] Q��H@	� ��⁄ I is estimated	as 

Q��� H@	� ��⁄ I = ��� �#! ∑ A58� 9�⁄�:��∈�: � = [#!\� �∑∑ �85/9��:� 8;/9��:� "85;/9��:�
85;/9��:� �� A585/9��:� − A;8;/9��:� �����∈�: �	                    (15) 

But from equation (5) we have 

85/9��:� 8;/9��:� "85;/9��:�
85;/9��:� = �"85/9��:� "8;/9��:�

��!$"��                                                                  (16) 

Hence substituting (16) in (15) we get 

Q��� H@	� ��⁄ I = #:
�!:�!L"�� �∑∑ [2 − 
�/����� 
�/����� \ � A585;/9��:� − A;85;/9��:� �	����∈�: �	                           (17) 

Here the dataset is made up of both available values and estimates of missing values thus	�, � = 1, 2, … , 	�$ ∈ ��	, i.e. can 

take any value in the second-phase sample. 

The above variance estimate given in equation (17) is conditionally unbiased for Q��H@	� ��⁄ I and consequently unbiased 

for	egQ��H@	� ��⁄ Ih. This implies that 

egQ��H@	� ��⁄ Ih = #:
�!:�!$"�� �∑∑ [2 − 
�/����� −
�/����� \ � A585/9��:� − A;8;/9��:� �	����∈�: �                       (18) 

Next, consider ���g@	�h in equation (14). Also using Sen-Yates-Grundy variance estimator, 

���g@	�h = ∑∑ �85���8;���"85;���85;��� ����∈�� � A585��� − A;8;����
�	                                          (19) 

Since the first phase sample is selected by SRSWOR, 


���� = 
���� = !# 	��^	
����� = !�!"��#�#"��	                                                     (20) 

Therefore 

85���8;���"85;���85;��� = #"!#�!"�� 	and	 � A585��� − A;8;����
� = [#!\� H�� − ��I�	                                    (21) 

Substituting equations (20) and (21) in eq. (19) we obtain 
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���g@	�h = ∑∑ [ #"!#�!"��\���∈�� [#!\� H�� − ��I� = #�#"!�!:�!"��∑∑ H�� − ��I����∈�� 	                             (22) 

But �	values are not obtained in the first-phase sample	�� therefore �22� is estimated using the values in the second-phase 

sample ��	as 

����g@	�h = #�#"!�!:�!"��∑∑ HA5"A;I:85; 9�⁄�:����∈�: 	                                                              (23) 

Also �, � = 1,2, … , �$ ∈ ��	 
Combining (18) and (23), the total variance of the population total estimate is obtained as 

����H@	I = #:
�!:�!L"�� �∑∑ [2 − 
� ��⁄��� − 
�� ��⁄��� \���∈�: � A585 9�⁄�:� − A;8; 9�⁄�:� �	�� + #�#"!�!:�!"�� �∑∑ HA5"A;I:85;/9��:����∈�: 	�	              (24) 

3.4. Mean Square Error of the Proposed Estimator 

The mean square error of a point estimator �		 of a 

parameter �	is 

��eH	�	I = 	e nH�		– 	�I�s = ���H�		I + 	 g���EH	�	Ih�	  (25) 

See [22, 23]. 

From equation (25) the mean square error of the proposed 

estimator @		is 

��eH@	I 	= ���H@	I + g���EH@		Ih�  

Since @	  is asymptotically unbiased for	@,��eH@	I of @	  is 

equivalent to the variance given in equation (22). 

4. Results and Discussions 

Using R Statistical Software, � = 1000  values of both 

auxiliary and study variable were generated. A first-phase 

sample of � = 600  units was drawn by simple random 

sampling without replacement and auxiliary variable 

information was obtained. None of the auxiliary variable 

values �
��  were overly large and thus the first-order and 

second-order inclusion probability proportional to size for the 

second-phase sample units were calculated respectively as 

given by equations (4) and (5). 

After obtaining the first-order inclusion probabilities, 

second-phase sample of sizes 100, 200,300 and 400 were 

drawn with probabilities proportional to size 
� from the first 

phase sample and both 
�  and ��  are measured. Using this 

samples, population total estimate and its variance when 

there were no missing values are obtained. 

The second phase samples were then subjected some 

conditions so that a proportion of some study variable values 

were missing. The missing values were then imputed the using 

the earlier discussed methods and The population total 

estimate in each case. For proposed model-based imputations, 

Gaussian kernel defined as X�Z� = �√�8 F"�:V: was used whose 

optimal bandwidth as given by [24] is	���V = 1.06�� [B"� � \. 

�� = min	H�, � 1.34 I , where � =   �K"�∑ �
� − 
̅��K�(�  and � 

is the inter-quartile range of the auxiliary data. Variance of 

these population total estimates were then calculated as given 

by equations (24). The results are as shown in the tables below. 

4.1. Population Mean Estimates 

Table 1. Show the population total estimates. 

Second Phase Sample Size No Missing Values Mean Imputation Regression Imputation Stochastic Imputation Model-based Imputation 

100 76,474 78,628.66 74,129.14 74,285.05 77,523.86 

200 75,853.49 77,136.18 74,588.65 75,094.61 75,137.49 

300 75,004.62 73,976.80 75,321.38 75,719.28 75,201.04 

400 74,956.23 75,634.71 75,024.92 75,101.00 75,001.57 

In order to get an insight on the best method, the difference between the population total estimates under a given imputation 

and when there are no missing values as obtained. The results are as shown. 

Table 2. Show the difference in population mean estimates as disused above. 

Second Phase Sample Size Mean Imputation Regression Imputation Stochastic Imputation Model-based Imputation 

100 2,154.66 -2,344.86 -2,188.95 1,049.86 

200 1,282.69 -1,264.84 -758.88 -716.00 

300 -1,027.82 316.76 714.66 196.42 

400 678.48 68.69 144.77 45.34 
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From table 2, the differences between the population total 

estimates under model-based imputation and when there 

were no missing values were smaller in all sample sizes 

compared to mean, regression and stochastic imputations. It 

also can be clearly seen that estimates improve as the second 

phase sample size increase since the difference reduce as the 

sample size increase. 

4.2. Variance of the Population Total Estimates 

Table 3. Show the variance of the population total estimates. 

Second Phase Sample Size No Missing Values Mean Imputation Regression Imputation Stochastic Imputation Model-based Imputation 

100 287625 186109 248789 269873 270427 

200 160405 107244 137380 148177 151407 

300 116214 85700.6 100733 114195 114915 

400 97877.5 83510.7 94739.2 96530.7 96859.4 

 

These variances were plotted against the sample sizes as 

shown in figure 1. As per the figure, the variance of the 

estimates obtained by the model-based imputation is closer to 

the variance of estimates obtained when there were no 

missing values in all sample sizes. It is followed by 

stochastic, regression and mean imputation in that order. As 

the sample size increase, the reproduction of well-known 

variance improves. 

 
Figure 1. Graph of Variance estimate against Sample Size. 

5. Conclusion and Recommendations 

5.1. Conclusion 

The empirical study compared the performance of mean, 

regression, stochastic and non-parametric model-based 

imputation in terms of reproducing population total estimates 

and variance that was obtained when there were no missing 

values. Model-based imputation was found to be best in 

reproducing population total estimate obtained when there 

were no missing values in all of the sample sizes considered 

compared to mean, regression and stochastic imputation. For 

the case of variance estimates, non-parametric model-based 

imputation performed better in reproducing variance estimate 

of population total estimate obtained when there were no 

missing values compared to mean, regression and stochastic 

imputation methods. Based on the results, non-parametric 

model-based imputation is recommended, especially if the 

relationship between variables is not linear. 

5.2. Recommendations 

In this paper, it is assumed that the missing data 

mechanism is MCAR. A case when missing data mechanism 

is either MNAR or MAR (see [1, 3] for additional 
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understanding on missing data mechanisms) may be 

considered. Also, a single auxiliary and a single study 

variable was considered but, in most case, survey variable 

may be determined by more than one auxiliary variable. 

Therefore, a case where multi-auxiliary information and non-

parametric regression model are used in estimating missing 

values need to be investigated. 
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